京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多变量分析:多元回归分析
多元回归分析(Multiple Regression Analysis)是多变量分析的基础,也是理解监督类分析方法的入口!实际上大部分学习统计分析和市场研究的人的都会用回归分析,操作也是比较简单的,但能够知道多元回归分析的适用条件或是如何将回归应用于实践,可能还要真正领会回归分析的基本思想和一些实际应用手法! 下面我们就来谈谈多元回归分析,这张图是利用多元线性回归制作的策略分析图,你可以理解X轴是重要性,Y轴是表现;
首先,多元回归分析应该强调是多元线性回归分析!强调线性是因为大部分人用回归都是线性回归,线性的就是直线的,直线的就是简单的,简单的就是因果成比例的;理论上讲,非线性的关系我们都可以通过函数变化线性化,就比如:Y=a+bLnX,我们可以令 t=LnX,方程就变成了 Y=a+bt,也就线性化了。
一般我们采用的变化要根据数据分布特征来进行,下表是常用的变化方法:
当然,变化的主要目的是线性化,同时期望数据分布是近似正态分布!
第二,线性回归思想包含在其它多变量分析中,例如:判别分析的自变量实际上是回归,尤其是Fisher线性回归方程;Logistics回归的自变量也是回归,只不过是计算线性回归方程的得分进行了概率转换;甚至因子分析和主成分分析最终的因子得分或主成分得分也是回归算出来的;当然,还有很多分析最终也是回归思想!
第三:什么是“回归”,回归就是向平均靠拢。
第四:如果你用线性回归方式去解释过去,你只能朝着一个趋势继续,但未来对过去的偏离有无数种可能性;
第五:线性回归方程纳入的自变量越多,越应该能够反应现实,但解释起来就越困难;
第六:统计学家往往追求的是简约的模型和更高的解释度,往往关注模型R平方,共线性和回归诊断问题;
第七:市场研究人员往往注重模型的解释合理性,是否与预设的直觉一直,是否支持了我的市场假设等;
下面我们从市场研究人员的角度看看如何利用多元线性回归:
多元线性回归分析的主要目的是:解释和预测
假设我们收集了100个企业客户经理对我产品的总体满意度和分项指标的满意度评价,我期望知道,什么分项指标对我总体满意度有重要影响,它的改进更能够提升总体满意度;如果建立预测模型,我期望知道了分项指标的评价就能够预测总体满意度数值;
在SPSS中选择回归分析后,把X10作为因变量,X1到X7作为自变量
一般选择自变量进入方程的方法,可以先采用逐步回归,让计算机程序帮助确定变量的重要性,这在统计层面非常好,但是如果针对我现在的研究我需要采用Enter全部进入,如果某个指标不显著,就不在方程中了我如何与客户说呢?(假设他不懂统计,并且我需要完成上面的策略图);
选择相应的统计参数和输出结果,注意:多变量分析都需要考虑缺省值问题,逐步回归中我们可以得到R平方的变化对我们理解方程有帮助!(Enter方法不需要)
R平方是我们最需要关注的,该值说明了方程的拟合好坏,R平方=0.80非常不错了,说明:1)总体满意度的80%的变差都可以由7个分项指标解释,或者说,7个分项指标可以解释总体满意度80%的变差!2)R平方如果太大,大家不要高兴太早,社会科学很少有那么完美的预测或解释,一定存在了共线性!
方程分析表的显著性表明了回归具有解释力!
线性回归方程给出可预测的计算系数,但是,社会科学很少进行预测,重要的是解释;
这里要注意的是如果自变量的测量尺度是统一的话,我们可以直接比较系数的大小,但是如果自变量的测量尺度不统一的话,我们必须看标准化回归系数,标准化回归系数去掉的量纲,且反应了重要性!我们就是需要重要性测量!
当然,这个时候,研究人员应该关注每个指标的回归系数是否真的等于零,要进行假设检验!
我这里就直接应用了,我们可以把7个自变量指标的均值作为表现,7个自变量的标准化相关系数作为重要性,完成散点图!重要的指标,表现差当然是我们急需改进的了,这就是前面策略图了。
我这是典型的市场研究思维方式,不太关注统计意义,而且我将所有的坐标轴和坐标数值都让你看不到,我只是表现了测量,或许对市场洞察足够了;但记住统计学家不能这样!如果你是关注统计思想的人,应该要理解下面这张回归解释图!
线性回归:提及因果关系, 必须非常谨慎!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24