
探索大数据理论
最早的大数据这个概念是由McKinsey提出的,他认为在当今世界,已经渗透到各个行业及其业务职能的各个领域的数据已成为生产人员能够开采和利用海量数据的一个重要原因,可以看出,新的生产率上升和消费者盈利的大潮即将到来。
行业中最早对大数据进行定义的是IBM,它将其展开并分为四个特质,那就是量,多种类,价值和速度。深入分析来看,大数据的这四个层次可以一一进行剖析:首先,数据量是巨大的,对于大数据的初始计量的单位至少也是P(相当于一千T),E(相当于一百万T)或Z(相当于十亿T);其次是数据的类型品种十分丰富,举例来说,有博客、视频、图片和位置信息等;再次,越低的密度造就了越高的商业价值;最后,大数据的处理速度与传统的DM技术相比较而言从本质上就拉开了差距。
然而,事实上,这些特质并没有真正说清大数据应当具备的所有特点,实际上,还有更多大数据的特征需要我们去发现,例如分析性、社交性、研究性等等。
正如那句老话:三分靠技术,七分靠数据,谁得到数据,世界就是谁的。有人可能会质疑这句话的有效性,但实际上不管是谁说过的,这句话都是不变的真理。 Viktor Mayer-Schönberger在其著作《大数据时代》中列举了各种例子,只为了说清一个事实,那就是大数据时代已经来临,所以我们必须使用大数据分析的探索性思维来挖掘大数据自身和对外界的价值,包括其潜在价值。他在书里着重阐述了谷歌是怎样使用人们进行搜索的历史记录来进行二次BI数据挖掘从而得到更多价值的,其中令人印象最深的就是利用搜索记录预计某个地方的流感传染的情况。另外,作者还描写了亚马逊网站是怎么购买使用用户的历史浏览记录数据来针对特定用户进行推荐不同种类书籍的购买,后来的统计结果发现,这样做的确能够对销售收入产生一个激增的影响。还有一些美国的购票系统利用所有过去的十年里机票价格的数据来预计何时开始放出购买车票的权限是适当的,主要是想得出一个对其盈利能力能有大幅增长的方案,最后的结果也显示出这么做的确具有较好的效果。
因此,问题就来了,怎样判定一个思维是大数据的? Viktor Mayer-Schönberger在书中写到,大数据并不存在抽样,而是包括所有数据的样本,并且它注重的不是准确性,而是效率如何,另外,大数据注重相关性而非因果关联。
其他还有一些专家对大数据也存在一些独特的想法:
目前的数据还不算大,数据变得真正有趣的是因为它在网上,而这个正是互联网的特征。
不在互联网时代存在的产品的功能必须是它具有一定的价值,而如今在互联网时代存在的产品,数据就是这个产品所具有的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23