
平台的问题形形色色,分析平台安全的方法也层出不穷,其中有个很重要的方法:数据分析。它曾经是很多注明平台评级排序榜单的基础。在e速贷和四达之后,某些热衷于数据分析的大师,遭到了许多投资者无情的鄙夷,究其缘由不过是未能成功预报e速贷和四达这两颗大雷。
数据分析的大概的原理,就是通过对平台交易量、资金流入流出、平台资产、重要投资人的投资额、重要借款人的借款额等数据及其变化的分析,来分析判断平台的安全状况。
借用炒股的说法,这属于技术派的范畴,利用这种方法判断平台的投资人,对资金池和自融是不忌讳的,因为数据分析的核心,是通过监测变化,确保自己的投资在问题爆发之前安全出逃。它相信平台安全是动态的,认为平台是有安全期的。这种方法,对背景等因素也不是十分迷恋。当然对担保、托管这些要素更是不屑。
客观地说,这种方法,对于目前的行业状况,是有重要效果的,特别是对分析有资金池或自融情况下的平台安全,是有重要意义的。但是,也存在一些局限:
1、数据的真实性。它能够有效监督有资金池或自融情况下的平台安全的前提,是数据真实;但是,在有资金池的情况下,平台数据的真实性值得怀疑,马甲标、自我满标等大家应该听过不少。因此,用此方法,要重点分析数据真实性。
2、从目前平台暴雷的原因看,违规操作依然是绝对主要原因,资金池和自融是罪魁祸首(当然因为坏账逾期、保障失效而出问题的也不少)。就是说,数据分析一定程度上是刀口舔血的活儿,风险很大。
3、平台的合规性被空前重视,特别是4月份启动的全国范围的互金整治之后,“合规是互金发展的首要因素”被越来越多的投资人和平台所接受。“数据分析”派对资金池和自融的包容,对背景等重要因素的忽视,对担保、存管(托管)等合规要素的不屑,都会加大其自身的风险。
当然,说这些并不是否定“数据分析”的意义。错不在分析数据,而是分析过程中“只重好歹,不辩是非”的偏颇,这种是非,既是合规与否,也是数据真假。
假数据分析出来的结论自然不可靠;即使数据是真的,若平台存在违规的高风险操作,虽然能看到实时的状况,但一旦发生变化,也回天无力。数据反映的是经营状况,如果数据恶化了,那么经营状况一定已经开始走向负面,这就决定了我们无法从数据上“预测”,因为数据是滞后的,数据不能反映未来的经营状况,如果根据数据讲某个平台可能有风险,实际上是说这个平台过去的经营状况可能存在问题,如果要雷,投资人已经深陷其中了。
数据分析的最大局限在于:只能根据掌握的数据(真假难辨),判断平台眼下的安全状况;一旦因隐藏的信息或其他原因导致形势急速变化时,无能为力(而这往往是很大一部分平台暴雷的特征)。
数据分析良好地发挥作用,是以经营合规和信息透明为前提的,他会告诉你哪个平台更好。随着监管与整治的推进,它将发挥越来越大的作用。但眼下,依然还需谨慎!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24