京公网安备 11010802034615号
经营许可证编号:京B2-20210330
平台的问题形形色色,分析平台安全的方法也层出不穷,其中有个很重要的方法:数据分析。它曾经是很多注明平台评级排序榜单的基础。在e速贷和四达之后,某些热衷于数据分析的大师,遭到了许多投资者无情的鄙夷,究其缘由不过是未能成功预报e速贷和四达这两颗大雷。

数据分析的大概的原理,就是通过对平台交易量、资金流入流出、平台资产、重要投资人的投资额、重要借款人的借款额等数据及其变化的分析,来分析判断平台的安全状况。
借用炒股的说法,这属于技术派的范畴,利用这种方法判断平台的投资人,对资金池和自融是不忌讳的,因为数据分析的核心,是通过监测变化,确保自己的投资在问题爆发之前安全出逃。它相信平台安全是动态的,认为平台是有安全期的。这种方法,对背景等因素也不是十分迷恋。当然对担保、托管这些要素更是不屑。
客观地说,这种方法,对于目前的行业状况,是有重要效果的,特别是对分析有资金池或自融情况下的平台安全,是有重要意义的。但是,也存在一些局限:
1、数据的真实性。它能够有效监督有资金池或自融情况下的平台安全的前提,是数据真实;但是,在有资金池的情况下,平台数据的真实性值得怀疑,马甲标、自我满标等大家应该听过不少。因此,用此方法,要重点分析数据真实性。
2、从目前平台暴雷的原因看,违规操作依然是绝对主要原因,资金池和自融是罪魁祸首(当然因为坏账逾期、保障失效而出问题的也不少)。就是说,数据分析一定程度上是刀口舔血的活儿,风险很大。
3、平台的合规性被空前重视,特别是4月份启动的全国范围的互金整治之后,“合规是互金发展的首要因素”被越来越多的投资人和平台所接受。“数据分析”派对资金池和自融的包容,对背景等重要因素的忽视,对担保、存管(托管)等合规要素的不屑,都会加大其自身的风险。
当然,说这些并不是否定“数据分析”的意义。错不在分析数据,而是分析过程中“只重好歹,不辩是非”的偏颇,这种是非,既是合规与否,也是数据真假。
假数据分析出来的结论自然不可靠;即使数据是真的,若平台存在违规的高风险操作,虽然能看到实时的状况,但一旦发生变化,也回天无力。数据反映的是经营状况,如果数据恶化了,那么经营状况一定已经开始走向负面,这就决定了我们无法从数据上“预测”,因为数据是滞后的,数据不能反映未来的经营状况,如果根据数据讲某个平台可能有风险,实际上是说这个平台过去的经营状况可能存在问题,如果要雷,投资人已经深陷其中了。
数据分析的最大局限在于:只能根据掌握的数据(真假难辨),判断平台眼下的安全状况;一旦因隐藏的信息或其他原因导致形势急速变化时,无能为力(而这往往是很大一部分平台暴雷的特征)。
数据分析良好地发挥作用,是以经营合规和信息透明为前提的,他会告诉你哪个平台更好。随着监管与整治的推进,它将发挥越来越大的作用。但眼下,依然还需谨慎!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06