
大数据时代,你熟悉这几种互联网征信的模式吗
传统个人征信的分析维度包括:
1 )个人基本数据,如年龄、性别、职业、收入、婚姻状况、工作年限、 工作状况等;
2) 信贷情况,主要是信贷和信用卡相关数据;
3)公共数据,包括税务、工商、法院、电信、水电煤气等部门的数据;
4) 个人信用报告查询记录。
如今随着大数据时代的到来和发展,可用于评估人们的数据越来越丰富,如电商的交易数据、社交类数据(强社交关系如何转化为信用资产)、网络行为数据等, 来自互联网的数据将帮助金融机构更充分地了解客户。
(一) 侧重电商: 芝麻信用
以芝麻信用所构建的信用体系来看,芝麻信用分根据当前采集的个人用户信息进行加工、整理、计算后得出的信用评分,分值范围是 350 到 950,分值越高代表信用水平越好,较高的芝麻分可以帮助个人获得更高效、更优质的服务。 芝麻分综合考虑了个人用户的信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度的信息,其中来自淘宝、支付宝等“阿里系”的数据占 30-40%。
1) 信用历史: 过往信用账户还款记录及信用账户历史。目前这一块内容大多来自支付宝,特别是支付宝转账和用支付宝还信用卡的历史。
2) 行为偏好: 在购物、缴费、转账、理财等活动中的偏好及稳定性。比如一个人每天打游戏 10 小时,那么就会被认为是无所事事;如果一个人经常买纸尿裤,那这个人便被认为已为人父母,相对更有责任心。
3) 履约能力: 包括享用各类信用服务并确保及时履约,例如租车是否按时归还,水电煤气是否按时交费等。
4) 身份特质: 在使用相关服务过程中留下的足够丰富和可靠的个人基本信息。 包括从公安、学历学籍、工商、法院等公共部门获得的个人资料,未来甚至可能包括根据开车习惯、敲击键盘速度等推测出的个人性格。
5) 人脉关系: 好友的身份特征以及跟好友互动的程度。根据“物以类聚人以群分”的理论,通过转账关系、校友关系等作为评判个人信用的依据之一。其采用的人脉关系、性格特征等新型变量能否客观反映个人信用,但目前还没有将社交聊天内容、点赞等纳入参考。
(二) 侧重社交: 腾讯信用
腾讯信用 主要是基于社交网络。 通过 QQ、微信、财付通、 QQ 空间、腾讯网、 QQ 邮箱等社交网络上的大量信息, 比如在线时长、登录行为、虚拟财产、支付频率、购物习惯、社交行为等, 利用其大数据平台 TDBank,在不同数据源中, 采集并处理包括即时通信、 SNS、电商交易、虚拟消费、关系链、游戏行为、媒体行为和基础画像等数据,并利用统计学、传统机器学习的方法,得出用户信用得分,为用户建立基于互联网信息的个人征信报告。
腾讯信用 评分以星级的方式展现。 信用星级一共 7 颗星,亮星颗数越多代表信用越良好,星级主要由四个维度构成:
1) 消费: 用户在微信、手机 QQ 支付以及消费偏好。
2) 财富: 在腾讯产品内各资产的构成、理财记录。
3) 安全: 财付通账户是否实名认证和数字认证。
4) 守约: 消费贷款、信用卡、房贷是否按时还等。
(三)侧重运营商: 聚信立
聚信立主要是基于互联网大数据,综合个人用户运营商数据、电商数据、公积金社保数据、学信网数据等,形成个人信用报告。 聚信立通过借款人授权,利用网页极速抓取技术获取各类用户个人数据,通过海量数据比对和分析,交叉验证,最终为金融机构提供用户的风险分析判断。
聚信立以报告形式展现,报告主要由四个维度构成:
1) 信息验真: 通过交叉比对验证用户是否是真实存在的人,是否有欺诈风险。
2) 运营商数据分析:分析用户生活、工作及社交范围,与家人朋友的联系频率等。
3) 电商数据分析: 分析用户消费能力及消费习惯,判断用户是否有能力还款。
4) 其他数据分析: 包括公积金社保数据、学信网数据、全国高法执行名单、黑名单等数据,判断用户是否存在欺诈风险。
聚信立的底层 IT架构为丰富的技术线提供稳定支持,对所有数据源网站进行实时监控,人工智能自动排错,可用率超过 90%。
(四)侧重信用卡: 51 信用卡
51 信用卡主要是基于用户信用卡电子账单历史分析、电商及社交关系强交叉验证。 根据用户的信用卡数据、开放给平台的电商数据所对应的购买行为、手机运营商的通话情况、登记信息等取得多维信息的交叉验证,确定用户的风险等级以及是否贷款给该用户。
51 信用卡风险等级由五个维度构成:
1) 账单管理时间: 信用卡有效存续时间越长,用户风险越低。
2) 账单表现: 根据用户的授信卡数、授信额度,以及还款比和账单完整度判断用户的还款能力和诚信程度。
3) 手机入网期限: 手机入网期限越长,用户风险越低。
4) 运营商: 通过近 4 个月有效通话记录以及通讯录中是否存在负面联系人判断用户自身的可靠程度。
5) 淘宝: 主要看常用收货姓名及电话号码是否与申请人预留号码一致。
大数据征信怎么做?随着大数据时代的到来和发展,可用于评估人们的数据越来越丰富,如电商的交易数据、社交类数据(强社交关系如何转化为信用资产)、网络行为数据等,来自互联网的数据将帮助金融机构更充分地了解客户。
1)侧重电商:芝麻信用。芝麻分来自淘宝、支付宝的数据占30-40%,综合考虑个人用户的信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度的信息;
2)侧重社交:腾讯信用。通过社交网络上的大量信息,比如在线时长、登录行为、虚拟财产、支付频率、购物习惯、社交行为等,得出用户信用得分;
3)侧重运营商:聚信立。综合个人用户运营商数据、电商数据、公积金社保数据、学信网数据等,形成个人信用报告;
4)侧重信用卡:51信用卡。根据用户的信用卡数据、开放给平台的电商数据所对应的购买行为、手机运营商的通话情况、登记信息等取得多维信息的交叉验证,确定用户风险等级。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08