京公网安备 11010802034615号
经营许可证编号:京B2-20210330
回到本系列的第一篇文章机器学习从入门到放弃之KNN算法,在里面有这样的一个问题

黄点代表1类电影的分布,绿色代表0类电影的分布,紫色代表需要分类的电影样本。
那么该怎么判别紫色的那颗点所在的类别呢?
之前给出的是KNN算法,通过计算紫色点都周边的剧场的长短,来判断紫色点属于哪个类别。现在有这样一种极端情况,黄点和绿点在紫点周围呈圆周分布,距离一样,咋办?
图画得不是太好,大家理会我的意思就行。
在这种情况,假如像下图这样的情况,就容易处理得多了。
红线的下方是黄色种类,上方时绿色种类。
这种情况我们称之为线性分类,关于如何拟合出这条线程函数下面会讲述。现在先来说说,既然这叫线性分类,那么必然会有非线性的情况啊,那咋办呢?
没错,如果特征可以被线性函数全部表达,这自然是理想情况,但实际问题中更多的非线性分类。
这时,我们需要将线性函数转换为非线性函数。那怎么转换呢,很简单,将线性函数(假设叫z),扔到某一非线性函数f(x)内,得到新的表达式y = f(z),就是我们所需的非线性分类器了,而f(x)也就作激活函数,它有很多种,本文只介绍逻辑回归所使用到的sigmoid函数,其表达式是
其图像有一个漂亮的S型
可见在x的取值范围足够大的时候,其从0变1的过程可以忽略不计,因此,我们习惯的把>0.5归为1类,<0.5归为0类,那么恰好是0.5怎么办?这个概率是极低的,如果真的是0.5,那就随机归类,然后出门买张彩票吧,说不定就不用继续当程序员了。 (/≥▽≤/)
回到表达式上,可知函数的变量是z其余都是常量,所要要求解该分类函数的值,就是要确定z的值而z是线性方程,基本的数学知识不难知道,
$$z=a1x1+a2x2……an*xn$$
其中[x1……xn]是输入向量,所以训练的过程就是确定于[a1,a2……an]的值,使得该表达式对于多个输入向量的输出值正确率最高。
下面开始讲述求最佳的[a1,a2……an]的方法
显然,我们可以设计一个函数来衡量[a1,a2……an]是否最佳,比如说这样的
显然当J(a)达到最小值时,a的值最佳。方法如下,
初始化weight,可以使用随机值
代入式子得到err = y – predict
weight = weight + alpha * error * x_train[i],其中alpha称为学习速率,太小会影响函数的收敛速度,太大刚才就不收敛了。
为了解决上述问题,在《机器学习实战中》使用了动态更新alpha的方法,式子为alpha = 4/(1+i)+0.01
上述修改weight的过程称为梯度下降法,其中我故意略去了数学证明部分,需要的同学请自行查找专业资料。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22