
数据分析也要讲究打组合拳
组合拳是拳击拳法的一种,在进攻当中利用各种单一拳法的组合连续攻击,使对手顾此失彼,达到击中对手的目的。联系到数据分析过程中,引申为采取一连套的方法实现一定的目标,而每一拳就是一种分析方法。
【我们遇到这样一个问题】
美国洛杉矶 12 个地区的 5 个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这 12 个地区进行综合评价, 请你出出主意,我们希望看到这12个地区中的某几个区属于同一类型,从而分而治之,有针对性的做出有意义的措施。
每个地区都有5个评价指标,不同地区的同一指标分布不同,一个地区的五个指标大小有别,差异显著,现在要对着12个地区进行评价,这是一个十分苦恼的事情。
多个评价指标,希望分而治之,聚类分析无疑是非常棒的选择,分类变量为总人口、学校校龄、总雇员、专业服务、中等房价:执行SPSS聚类过程:
12个地区最终分为几类?每个类别又有哪些特征呢?这是聚类分析需要解决的细节。我们以分为3类来说明现在遇到的新问题,树形图让我们十分清晰的看到每一次聚类的细节,哪些地区最先被归并为一类,因为他们最相似,但是,我们对着树形图又能下什么结论呢,望洋兴叹吧,树形图就是大忽悠。
不妨看看每一类别下5个评价指标的均值比较吧,这似乎有所帮助,虽然还是一片混乱,但最少我们很容易发现,第二类在每一个指标中的均值都是糟糕的,急需政府加大管理、投资的力度,第一类的地区人口不算多,但各项指标的均值都是组内最高的,可以说第一类的1、4、5、10四个地区是不用美国政府操心了,但结论是我们依然没有非常清晰的描述评价结果。
问题出在哪里?或许是用来评价地区经济情况的指标过于多了吧!
我们已经意识到一直困扰我们的其实是评价指标过多,这就需要降维,因子分析算是不错的选择,尝试是突破瓶颈的最好实践办法。接下来,我们试图将总人口、学校校龄、总雇员、专业服务、中等房价这5个指标进行降维处理,不是直接踢出,而是寻找隐匿其中潜在的因素。
因子分析 是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的“共同因子”。
提取前两个因子,可以解释5个指标的93.4%,在没有损失太多信息的同时,获得相对良好的解释能力,这是一个稳赚不赔的卖卖。
旋转之后的载荷结果令我们十分的满意,因子1与“校龄、服务、房价”三个指标相关性极强,而这三项总是居民乐开花,地区教育水平高,多项服务,房价且不高,这是理想的居住场所,可以命名为“福利因子”,在看因子2,与“总人口、总雇员”极相关,这是“人口因子”。
5个评价指标,现在可以用2个因子来代替,此时来描述每个地区的经济情况就非常的方便了,在此基础上再“打一拳”,会有什么样的惊喜?现在,聚类分析的步骤不变,参与聚类的变量为:福利因子和人口因子。
第一类地区,首先这些地区的福利因子较好,校龄、服务项目两基础设施方面都非常完善,但是享受好福利的同时,需要更多的钱购买房子,这是富人区吧。第二类地区,人口因子、福利因子都比较差,应当受到更多关注和支持。第三类,很明显是人口众多地区,但这里的居民未公平享受到各项福利,唯一心里安慰的是房价不高吧。
到此,我们可以看出,组合拳的结果更加丰富,在不真实反映地区经济分类后,还挖潜出影响各地区排名的潜在因素,让市政决策者能够更加清晰的综合评价各地区优缺点,有的放矢。
在确定分析目标之后,数据分析过程中不妨打出组合拳,将获得更多收获,找到更本质的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15