
数据分析也要讲究打组合拳
组合拳是拳击拳法的一种,在进攻当中利用各种单一拳法的组合连续攻击,使对手顾此失彼,达到击中对手的目的。联系到数据分析过程中,引申为采取一连套的方法实现一定的目标,而每一拳就是一种分析方法。
【我们遇到这样一个问题】
美国洛杉矶 12 个地区的 5 个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这 12 个地区进行综合评价, 请你出出主意,我们希望看到这12个地区中的某几个区属于同一类型,从而分而治之,有针对性的做出有意义的措施。
每个地区都有5个评价指标,不同地区的同一指标分布不同,一个地区的五个指标大小有别,差异显著,现在要对着12个地区进行评价,这是一个十分苦恼的事情。
多个评价指标,希望分而治之,聚类分析无疑是非常棒的选择,分类变量为总人口、学校校龄、总雇员、专业服务、中等房价:执行SPSS聚类过程:
12个地区最终分为几类?每个类别又有哪些特征呢?这是聚类分析需要解决的细节。我们以分为3类来说明现在遇到的新问题,树形图让我们十分清晰的看到每一次聚类的细节,哪些地区最先被归并为一类,因为他们最相似,但是,我们对着树形图又能下什么结论呢,望洋兴叹吧,树形图就是大忽悠。
不妨看看每一类别下5个评价指标的均值比较吧,这似乎有所帮助,虽然还是一片混乱,但最少我们很容易发现,第二类在每一个指标中的均值都是糟糕的,急需政府加大管理、投资的力度,第一类的地区人口不算多,但各项指标的均值都是组内最高的,可以说第一类的1、4、5、10四个地区是不用美国政府操心了,但结论是我们依然没有非常清晰的描述评价结果。
问题出在哪里?或许是用来评价地区经济情况的指标过于多了吧!
我们已经意识到一直困扰我们的其实是评价指标过多,这就需要降维,因子分析算是不错的选择,尝试是突破瓶颈的最好实践办法。接下来,我们试图将总人口、学校校龄、总雇员、专业服务、中等房价这5个指标进行降维处理,不是直接踢出,而是寻找隐匿其中潜在的因素。
因子分析 是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的“共同因子”。
提取前两个因子,可以解释5个指标的93.4%,在没有损失太多信息的同时,获得相对良好的解释能力,这是一个稳赚不赔的卖卖。
旋转之后的载荷结果令我们十分的满意,因子1与“校龄、服务、房价”三个指标相关性极强,而这三项总是居民乐开花,地区教育水平高,多项服务,房价且不高,这是理想的居住场所,可以命名为“福利因子”,在看因子2,与“总人口、总雇员”极相关,这是“人口因子”。
5个评价指标,现在可以用2个因子来代替,此时来描述每个地区的经济情况就非常的方便了,在此基础上再“打一拳”,会有什么样的惊喜?现在,聚类分析的步骤不变,参与聚类的变量为:福利因子和人口因子。
第一类地区,首先这些地区的福利因子较好,校龄、服务项目两基础设施方面都非常完善,但是享受好福利的同时,需要更多的钱购买房子,这是富人区吧。第二类地区,人口因子、福利因子都比较差,应当受到更多关注和支持。第三类,很明显是人口众多地区,但这里的居民未公平享受到各项福利,唯一心里安慰的是房价不高吧。
到此,我们可以看出,组合拳的结果更加丰富,在不真实反映地区经济分类后,还挖潜出影响各地区排名的潜在因素,让市政决策者能够更加清晰的综合评价各地区优缺点,有的放矢。
在确定分析目标之后,数据分析过程中不妨打出组合拳,将获得更多收获,找到更本质的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29