京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss中相关分析的菜单含义
相关分析(Correlate过程分析)
当我们需要研究两个定距以上的变量之间是否相关、相关的程度怎么样时,就要用到相关分析。
在对话框中运行Correlate过程
Analyze---Correlate-----看对话框的含义
一.Bivariate Correlate
1.相关系数的选择(Correlation Coefficients)
Pearson相关,也叫皮尔逊积距相关,只有变量是连续型变量时才能用这个系数,这也是系统的默认值。计算公式:
R=1,所有观察值在一条直线上
2. Kendall’s Tau-b适合两个定序变量)
tau-b =
3.Spearman的 rho系数
在这个对话框中虽然也给出了另外两个相关系数,但线性相关一般用R,而不是其他选择其他的两个。
2.检验选择:Two tailed:否定域在两端的位置,两端比一端更加难以否定原假设,在假设难以定出方向的时候用; one tailed ——否定域其中在一端,研究假设明确时用。
Flag significant correlations ——显示相关系数的显著性水平,相关系数的右上角有*,则代表显著性水平是5%, **代表显著性水平是1%
如果需要得到具体的显著性水平值,可以进入表格编辑模式,双击显著性水平值所在的单元格,可以看到确切的值。
3.Option
Statistics: Means and st均值,标准偏差
Cross-product deviation and covariance—算出离差积及协方差,在高级统计上用得多,在初级统计上一般不用
4.缺少个案值的处理:
Exclude cases pairwise不管其他变量有没有缺少值,只要计算相关系数的那对变量不存在缺省值,就不删除这个个案
Exclude cases listwise:只要有一个变量有缺省值,就把这个个案删除。
例子1:进行目前收入与受教育年限之间的相关关系
1.在进行分析以前,一般要先做散点图,判断两变量之间有没有相关趋势,是否是线性相关的趋势,如果是,继续分析,如果不是,则不能直接进行分析了。
2.进行相关分析, 用2000年中国统计数据
例子2:人均GDP与地区人力资本状况之间的关系
人均GDP与15岁及以上人口中大专及以上文化程度者百分比
3.农民工文化程度与目前收入水平的相关状况
二.Partial correlation偏相关(也叫净相关)
主要分析多个变量的作用,在分析任意两个变量的相关时,控制第三方变量以后,来确定两个变量之间的真实相关以及方向。
净相关系数是以R相关系数为基础的,因此属于对称相关测量的一种,它要求变量之间是直线关系,而且所有变量必须是定距变量。偏相关系数可以从不同的角度来说明,相应地有不同的计算公式,它可以通过加入这以变量以后和未加入这个变量时相关程度的增加数来表示
某因素与因变量的偏相关系数=
净相关的平方具有消减误差比例的含义
Analyze-----Correlate-----Partial------打开对话框
Variables——选择要计算偏相关系数的变量――如人均GDP,城镇居民家庭人均可支配收入
Controlling for—放入控制变量――每10万人口中大专及以上者百分比
Test of significance——检验的显著性水平
Options:
Statistics
Means and standard deviations 给出每个变量的均数与标准差
Zero order correlation——给出包括协变量在内的所有变量的相关矩阵
例子: 控制每10万人口中大专及以上者百分比,求人均GDP与城镇居民家庭人均可支配收入之间的净相关
没有控制人力资本状况时相关:
控制以后的相关:
- - - P A R T I A L C O R R E L A T I O N C O E F F I C I E N T S - - -
Controlling for.. JCOLLEGE
PCGDP DISINC
PCGDP 1.0000 .7772
( 0) ( 28)
P= . P= .000
DISINC .7772 1.0000
( 28) ( 0)
P= .000 P= .
(Coefficient / (D.F.) / 2-tailed Significance)
" . " is printed if a coefficient cannot be computed
三.距离分析(Distance)
距离分析主要是用来计算变量之间或观察量之间的相似性。使用距离分析可以对变量进行分类,性质越接近的样本,他们的距离越近,相似系数越大,越接近1或-1。而彼此无关的样本,则其相似系数越接近0。相似性强的样本属于一类。相似性差的则属于不同的类别。
1.打开主对话框
2.选择进行距离分析的变量weight , mpg, accel进入Variables框
注意:在 Label cases by框内可放入一个变量,则取值会在输出结果中给相应的记录加上标签,以方便阅读,只在分析个案之间的距离有用。
3.在compute distance 栏内选择Between variables,计算每一对变量之间的距离。
Between cases:两个个案之间的距离,选择这项,会给出每一对观察量之间的距离
Between variables: 每一对变量之间的距离
4.在 Measure栏内选择Dissimilarity 选项,来分析变量之间的不相似性,系统默认使用欧氏距离来分析,数值越大,距离越远。相似性测量―――默认的是Pearson correlation。 不相似分析与聚类分析基本相同。
测量选择问题:
单击Measures,打开Dissimilarity Measures对话框,在对话框内选择 Euclidean distance选项,Range0 TO1 选项
选择哪一种测度?一般使用默认值,这些选择项的含义如下,不过没有必要去详记。
选择interval选项,要求变量是定距的,如长度、重量、压力等
● Euclidean Distance
● Squared Euclidean distance
● Chebychev
● Block
● Minkowski
● Customized 容许用户自己定义距离公式。
选择counts
● chi-square measure 卡方检验
● phi-square measure 的值除于联合频数的平方根
选择 Binary
● Euclidean Distance 最小距离0,最大为无穷
● Squared Euclidean distance 最小距离0,最大为无穷
● Size difference 使用大小不同的测度来测量,最小距离0,最大为无穷
● Pattern difference 在0-1的范围测度
● Variance 用方表示距离
● Shape 在0-1的范围测度
● Lance and Williams 0-1范围测度
Transform Values
Standardize
● None 对观察值或变量不进行标准化
● Z score 标准化到Z分数(均值0,方差1)
● Range –1 to 1观察值或变量标准化到-1----1的范围内
● Range 0 to 1观察值或变量标准化到0----1的范围内
● Maximum magnitude of 1 观察值或变量都除于观察值或变量的最大值
● Mean of 1 观察值或变量都除于均值,如果均值为0,则先加1
●Standardized devation of 1观察值或变量都除于标准差
Transform measures
● Absolute values 对距离取绝对值
●Change sign 对距离取负数
● Rescale to 0-1 ranges 对距离进行标准化
如何对相似性进行测度
Measures-----Similarities-----
选择Inerval时
●Pearson correlation 取值在-1---1之间
●Cosine 用余弦来度量相似性,
选择Binary时
●Russell and rao使用二分点乘积为配对系数
●Simple matching 配对数占总对数的比例
●Jaccard 讲分子与分母中的配对数与非配对数给予相同的权重
●Dice 使用DICE配对系数
●Rogers and Tanimoto 分母为配对数,分子为非配对数,非配对数给以加倍的权重
●Sokal and Sneath1分母为配对数,分子为非配对数,配对数给以加倍的权重
●Sokal and Sneath2分母、分子均为非配对数,分子以加倍的权重
●Sokal and Sneath3分母为配对数,分子为非配对数,分子、分母的权重相同
Transform measures
● Absolute values 对距离取绝对值
●Change sign 对距离取负数
● Rescale to 0-1 ranges 对距离进行标准化
Standardize
● None 对观察值或变量不进行标准化
其余与前面相同
实例:
数据:SPSS所带的judges.sav数据
中、美、法等7个国家的裁判与没有结果严格训练的体育爱好者在进行体育比赛时对选手的评分,根据评分高低来看那些国家的裁判在评判上比较一致,哪些国家的裁判比较不一致。
1. Analyze---Correlate---Distances
2. Variable---judge1-judge8
3. 选择Between variables
4. Measure—选择Dissimilarities 默认方式
5. 结果:
结论:美、法、韩国的裁判比较接近;中、俄、罗比较接近。体育爱好者与7国裁判差别大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06