spss中相关分析的菜单含义
相关分析(Correlate过程分析)
当我们需要研究两个定距以上的变量之间是否相关、相关的程度怎么样时,就要用到相关分析。
在对话框中运行Correlate过程
Analyze---Correlate-----看对话框的含义
一.Bivariate Correlate
1.相关系数的选择(Correlation Coefficients)
Pearson相关,也叫皮尔逊积距相关,只有变量是连续型变量时才能用这个系数,这也是系统的默认值。计算公式:
R=1,所有观察值在一条直线上
2. Kendall’s Tau-b适合两个定序变量)
tau-b =
3.Spearman的 rho系数
在这个对话框中虽然也给出了另外两个相关系数,但线性相关一般用R,而不是其他选择其他的两个。
2.检验选择:Two tailed:否定域在两端的位置,两端比一端更加难以否定原假设,在假设难以定出方向的时候用; one tailed ——否定域其中在一端,研究假设明确时用。
Flag significant correlations ——显示相关系数的显著性水平,相关系数的右上角有*,则代表显著性水平是5%, **代表显著性水平是1%
如果需要得到具体的显著性水平值,可以进入表格编辑模式,双击显著性水平值所在的单元格,可以看到确切的值。
3.Option
Statistics: Means and st均值,标准偏差
Cross-product deviation and covariance—算出离差积及协方差,在高级统计上用得多,在初级统计上一般不用
4.缺少个案值的处理:
Exclude cases pairwise不管其他变量有没有缺少值,只要计算相关系数的那对变量不存在缺省值,就不删除这个个案
Exclude cases listwise:只要有一个变量有缺省值,就把这个个案删除。
例子1:进行目前收入与受教育年限之间的相关关系
1.在进行分析以前,一般要先做散点图,判断两变量之间有没有相关趋势,是否是线性相关的趋势,如果是,继续分析,如果不是,则不能直接进行分析了。
2.进行相关分析, 用2000年中国统计数据
例子2:人均GDP与地区人力资本状况之间的关系
人均GDP与15岁及以上人口中大专及以上文化程度者百分比
3.农民工文化程度与目前收入水平的相关状况
二.Partial correlation偏相关(也叫净相关)
主要分析多个变量的作用,在分析任意两个变量的相关时,控制第三方变量以后,来确定两个变量之间的真实相关以及方向。
净相关系数是以R相关系数为基础的,因此属于对称相关测量的一种,它要求变量之间是直线关系,而且所有变量必须是定距变量。偏相关系数可以从不同的角度来说明,相应地有不同的计算公式,它可以通过加入这以变量以后和未加入这个变量时相关程度的增加数来表示
某因素与因变量的偏相关系数=
净相关的平方具有消减误差比例的含义
Analyze-----Correlate-----Partial------打开对话框
Variables——选择要计算偏相关系数的变量――如人均GDP,城镇居民家庭人均可支配收入
Controlling for—放入控制变量――每10万人口中大专及以上者百分比
Test of significance——检验的显著性水平
Options:
Statistics
Means and standard deviations 给出每个变量的均数与标准差
Zero order correlation——给出包括协变量在内的所有变量的相关矩阵
例子: 控制每10万人口中大专及以上者百分比,求人均GDP与城镇居民家庭人均可支配收入之间的净相关
没有控制人力资本状况时相关:
控制以后的相关:
- - - P A R T I A L C O R R E L A T I O N C O E F F I C I E N T S - - -
Controlling for.. JCOLLEGE
PCGDP DISINC
PCGDP 1.0000 .7772
( 0) ( 28)
P= . P= .000
DISINC .7772 1.0000
( 28) ( 0)
P= .000 P= .
(Coefficient / (D.F.) / 2-tailed Significance)
" . " is printed if a coefficient cannot be computed
三.距离分析(Distance)
距离分析主要是用来计算变量之间或观察量之间的相似性。使用距离分析可以对变量进行分类,性质越接近的样本,他们的距离越近,相似系数越大,越接近1或-1。而彼此无关的样本,则其相似系数越接近0。相似性强的样本属于一类。相似性差的则属于不同的类别。
1.打开主对话框
2.选择进行距离分析的变量weight , mpg, accel进入Variables框
注意:在 Label cases by框内可放入一个变量,则取值会在输出结果中给相应的记录加上标签,以方便阅读,只在分析个案之间的距离有用。
3.在compute distance 栏内选择Between variables,计算每一对变量之间的距离。
Between cases:两个个案之间的距离,选择这项,会给出每一对观察量之间的距离
Between variables: 每一对变量之间的距离
4.在 Measure栏内选择Dissimilarity 选项,来分析变量之间的不相似性,系统默认使用欧氏距离来分析,数值越大,距离越远。相似性测量―――默认的是Pearson correlation。 不相似分析与聚类分析基本相同。
测量选择问题:
单击Measures,打开Dissimilarity Measures对话框,在对话框内选择 Euclidean distance选项,Range0 TO1 选项
选择哪一种测度?一般使用默认值,这些选择项的含义如下,不过没有必要去详记。
选择interval选项,要求变量是定距的,如长度、重量、压力等
● Euclidean Distance
● Squared Euclidean distance
● Chebychev
● Block
● Minkowski
● Customized 容许用户自己定义距离公式。
选择counts
● chi-square measure 卡方检验
● phi-square measure 的值除于联合频数的平方根
选择 Binary
● Euclidean Distance 最小距离0,最大为无穷
● Squared Euclidean distance 最小距离0,最大为无穷
● Size difference 使用大小不同的测度来测量,最小距离0,最大为无穷
● Pattern difference 在0-1的范围测度
● Variance 用方表示距离
● Shape 在0-1的范围测度
● Lance and Williams 0-1范围测度
Transform Values
Standardize
● None 对观察值或变量不进行标准化
● Z score 标准化到Z分数(均值0,方差1)
● Range –1 to 1观察值或变量标准化到-1----1的范围内
● Range 0 to 1观察值或变量标准化到0----1的范围内
● Maximum magnitude of 1 观察值或变量都除于观察值或变量的最大值
● Mean of 1 观察值或变量都除于均值,如果均值为0,则先加1
●Standardized devation of 1观察值或变量都除于标准差
Transform measures
● Absolute values 对距离取绝对值
●Change sign 对距离取负数
● Rescale to 0-1 ranges 对距离进行标准化
如何对相似性进行测度
Measures-----Similarities-----
选择Inerval时
●Pearson correlation 取值在-1---1之间
●Cosine 用余弦来度量相似性,
选择Binary时
●Russell and rao使用二分点乘积为配对系数
●Simple matching 配对数占总对数的比例
●Jaccard 讲分子与分母中的配对数与非配对数给予相同的权重
●Dice 使用DICE配对系数
●Rogers and Tanimoto 分母为配对数,分子为非配对数,非配对数给以加倍的权重
●Sokal and Sneath1分母为配对数,分子为非配对数,配对数给以加倍的权重
●Sokal and Sneath2分母、分子均为非配对数,分子以加倍的权重
●Sokal and Sneath3分母为配对数,分子为非配对数,分子、分母的权重相同
Transform measures
● Absolute values 对距离取绝对值
●Change sign 对距离取负数
● Rescale to 0-1 ranges 对距离进行标准化
Standardize
● None 对观察值或变量不进行标准化
其余与前面相同
实例:
数据:SPSS所带的judges.sav数据
中、美、法等7个国家的裁判与没有结果严格训练的体育爱好者在进行体育比赛时对选手的评分,根据评分高低来看那些国家的裁判在评判上比较一致,哪些国家的裁判比较不一致。
1. Analyze---Correlate---Distances
2. Variable---judge1-judge8
3. 选择Between variables
4. Measure—选择Dissimilarities 默认方式
5. 结果:
结论:美、法、韩国的裁判比较接近;中、俄、罗比较接近。体育爱好者与7国裁判差别大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03