京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析必须想清楚的两个概念:指标和维度
指标与维度是数据分析中最常用到的术语,它们是非常基础的,但是又很重要,经常有朋友没有搞清楚它们之间的关系,只有掌握理解了,我们的数据分析工作开展就就容易多了。现在就来说说指标与维度的那些事。
1、指标
指标,用于衡量事物发展程度的单位或方法,它还有个IT上常用的名字,也就是度量。例如:人口数、GDP、收入、用户数、利润率、留存率、覆盖率等。很多公司都有自己的KPI指标体系,就是通过几个关键指标来衡量公司业务运营情况的好坏。
指标需要经过加和、平均等汇总计算方式得到,并且是需要在一定的前提条件进行汇总计算,如时间、地点、范围,也就是我们常说的统计口径与范围。
指标可以分为绝对数指标和相对数指标,绝对数指标反映的是规模大小的指标,如人口数、GDP、收入、用户数,而相对数指标主要用来反映质量好坏的指标,如利润率、留存率、覆盖率等。我们分析一个事物发展程度就可以从数量跟质量两个角度入手分析,以全面衡量事物发展程度。
刚才说过,指标用于衡量事物发展程度,那这个程度是好还是坏,这就需要通过不同维度来对比,才能知道是好还是坏。
2、维度
维度:是事物或现象的某种特征,如性别、地区、时间等都是维度。其中时间是一种常用、特殊的维度,通过时间前后的对比,就可以知道事物的发展是好了还是坏了,如用户数环比上月增长10%、同比去年同期增长20%,这就是时间上的对比,也称为纵比;
另一个比较就是横比,如不同国家人口数、GDP的比较,不同省份收入、用户数的比较、不同公司、不同部门之间的比较,这些都是同级单位之间的比较,简称横比;
维度可以分为定性维度跟定量维度,也就是根据数据类型来划分,数据类型为字符型(文本型)数据,就是定性维度,如地区、性别都是定性维度;数据类型为数值型数据的,就为定量维度,如收入、年龄、消费等,一般我们对定量维度需要做数值分组处理,也就是数值型数据离散化,这样做的目的是为了使规律更加明显,因为分组越细,规律就越不明显,最后细到成最原始的流水数据,那就无规律可循。
最后强调一点,只有通过事物发展的数量、质量两大方面,从横比、纵比角度进行全方位的比较,我们才能够全面的了解事物发展的好坏。
进一步拓展思考,我理解为指标拆分和维度对比。
其实在实际产品数据分析的过程中也可参照以上思想。
通过大量的数据分析软件工具应用可以发现,主要包括以下内容:
整体情况的分析和汇总:全局数据的概况、变化趋势、占比等
多个维度的分析:如果是日志数据,已经存在多个数据项,以某一个数据项作为主关键词汇总分析,同比、环比变化,占总数的变化。如果没有日志数据,则需要想清楚解决这个问题原因是什么?需要采集哪些数据项?
重要场景问题的分析:根据分析的重要问题、用户关心的问题进行分析
软硬件性能管理、告警管理、报表管理、基础参数配置和用户管理等等
在多维度分析、告警、报表,数据图表可视化设计呈现方面也存在许多共性,总结如下:
数据的呈现方式是表格还是图表?若是时间范围,时间统计粒度是多少?
表格需要呈现哪些数据?数据的单位?保留几位小数?数据计算的方法?排序依据?
图表采用哪一种?呈现的范围是多少?
常见的数据项操作:新增、删除、修改、查询
新增哪些是必填数据项?校验重复性和有效性?
删除是否需要提醒?是否具有权限删除?
修改可修改的数据项有哪些?修改后是否要进行校验有效性和重复项?是否有修改的权限?
查询是精准查询还是模糊查询?是单一查询还是支持批量查询?批量查询输入方式的讲究?查询的内容输入什么是否支持大小写 空格等?数据区间的查询是自定义还是给出范围划分?
人们总认为与大数据分析沾点边的技术都要花大价钱才能得到。但事实上,大数据分析的思想才是最贵的,技术可以实现数据批量清洗,处理,呈现地更快、更美。但却不知道要哪些数据算有效,哪些数据才是重点需要分析得出有价值的信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22