
网站数据分析_数据分析师
数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。本文介绍的是网站的数据分析,来帮助你了解更多的用户,一起来看。
网站的数据分析系统,是对网站访问信息的记录和归类,以及在此基础上的统计分析,如网站访问量的增长趋势图、用户访问最高的时段、访问最多的网页、停留时间、用户使用的搜索引擎,主要关键词等,这些可以称为网站访问数据的基础分析。
同时还应提供网站被访问的整体数据,包括:单位时间内首页、搜索页面的访问人数、单位时间内各频道页面的访问人数、访问者的来源分析、各大类商品销售数据排行榜等!
一 数据统计:
1 流量统计是基础的数据统计
网站的统计工具可以让我们了解基本流量信息,包括独立访问者、访问停留时间、页面停留时间、访问率等;实时了解网站的变化趋势,了解有效覆盖人群的规模,了解推广的目标人群,在哪个页面,哪个频道。
1.了解网站的目标人群特征,为产品设计提供重要依据
2.了解网站关注行业用户量的潜在规模
3.与行业平均指标做对比,作为评估自身网站发展的指标
4.分析网站与竞争对手之间的用户重合度
5.分析自身网站内部各栏目间的用户重合度
根据网站的大致需求,相关网站“数据统计”的基本分析应具有:
A. 访问人次,即网站的访问人次,通常以日访问人次统计,此指标不排除同一访客同一天访问多次。
B. 访问总页面数,即访问者在站点上浏览的总页面数,通常以日统计。
C. 独立访客,也称独立IP,指访问站点的独立访客,通常以日访问人次统计,每台独立上网电脑被视为一个独立访问者。同一电脑多人使用时,不重复计算,仍视作一个独立访问者。
D. 人均停留时间,即访问者在网站停留的时间
计算公式:人均停留时间=访问人次停留时间/访问人次。指“独立访问者”平均每次访问某一网站的停留时间。也就是说一个周期内,从开始访问这个网站到结束访问这个网站所停留的时间。
E. 人均访问页数(PV值),即访问者平均访问页面数,
计算公式:PV值=访问总页面数/访问人次。这项指标同样重要,访问者平均访问页数越多,越能实现网站的目的指向。
F. 跳出率,即访问者到达站点后浏览页数仅有的一页的比率。
G. 新访客,即访问站点的访问者是否第一次登录站点,该指标从一侧面反应平台的人气程度和知名度,通常以日为单位进行统计。每日新访客人数越多,说明人气越高,影响度也越来越高。
H. 回访者,即访问站点的访问者超过一次以上登录站点,该指标从一侧面反应访问者对站点的接受程度,通常以日为单位进行统计,回访人数越多,说明站点被接受的程度越高,而通常,网站的潜在客户行为,就是在回访者中实现,如注册、购物、消费等。
I. 每个独立访问者访问频次:一个周期内独立访问者的平均访问次数。
2 关键字数据收集
包括两方面:
客户通过哪些关键字到达网站
客户在网站搜索哪些关键字 --- 精确地跟踪有哪些关键字产生了销售额或销售机会
3 网站专题及营销方式的效果统计
精确地跟踪有哪些专题产生了销售额或销售机会,跟踪由专题转换为销售的点击次数
帮助我们评估网站页面格局的合理性
跟踪销售额和销售机会
二 根据以上数据统计带来哪些分析结果:
1 对网站营销的意义:
通过网站的数据分析可以进行相关的推广效果评估,指导网站的页面布局和推广方式。这就需要我们明白网站的第一目标用户是谁,他们有什么特点。
当网站决定提供一项服务时,要清楚如何比别人做得更好。
第一步:分析品牌——看购物信息的网民经常在网上关注什么品牌
第二步:类别分析——他们经常访问哪些网站(除了购物类网站之外)
第三步:频道分析——他们一般关注这些网站的什么频道
第四步:定位产品方向——根据用户特点,设计网站页面内容,制定推广策略
2 对网站建设的意义:
通过统计的数据对网站布局合理性及吸引力、频道间相关性等情况进行评估
分析网站内容对访问用户的吸引力
分析网站内/外流量导入/导出的情况,了解合作网站,评估广告投放的真实效果
分析各个频道间流量的相互贡献程度
分析网站用户的访问路径,了解网站建设中的潜在问题
根据搜索的关键词分析,可帮助网站进行内容优化及页面布局
了解频道间相关性,帮助改善网站内容。
了解外部导入网站带来的合作价值
分析市场活动的行为指向,了解市场运作及合作方带来的流量价值
3 对提高客户满意度、忠诚度和网站粘性的意义
同时,可以通过数据分析,了解访问者最常进入以及最终流失的路径,找到如何留住忠实访问者及避免用户流失的方法。
大部分访问者从哪里来—分析网站流量来源
访问者最关注哪些栏目—分析访问者的浏览路径
访问者从哪里流失得最多—分析网站流量流失的原因
分析访问来源的差异性—分析不同访问渠道对流量的贡献程度
如果发现网站的流量流失很严重,访问量与有效注册量的比例失衡
需要:用数据分析查出用户流失的原因
1.统计访问者流失最高的栏目
2.分析该栏目访问路径中各个环节的流失率
3.分析该栏目页的主要问题并予以解决,提升用户操作满意度
数据分析不仅可以在网络广告前期发挥巨大作用,在投放后期同样是调整广告方向的重要工具。比如,通过数据可以看到用户从哪里来、如何组织产品页面可以实现很好的转化率、投放广告的效率如何等等问题。基于数据分析的每一点点改变,都可以使赚钱的能力提高一点点。所以,只有称数据分析为网络营销的灵魂才能凸显数据分析的重要性。现在,是重视数据分析的时候了。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16