京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中常犯哪些错误以及如何解决?
在大大小小的数据分析中会因为各种原因犯不同的错误都是哪方面的呢,又如何解决?
错把相关性当成因果性 correlation vs. causation
经典的冰淇凌销量和游泳溺水人数成正比的数据,这并不能说明冰淇凌销量的增加会导致更多的人溺水,而只能说明二者相关,比如因为天热所以二者数量都增加了。这个例子比较明显,说起来可能会有人觉得怎么会有人犯这样的错误,然而在实际生活、学习、工作中,时不时的就会有人犯这样的错误。
举个栗子
数据显示,当科比出手10-19次时,湖人的胜率是71.5%;当科比出手20-29次时,湖人的胜率骤降到60.8%;而当科比出手30次或者更多时,湖人的胜率只有41.7%。
根据这组数据,为了赢球,科比应该少出手?并不一定如此。有可能科比出手少的时候是因为队友状态好,并不需要他出手太多。也有可能是因为球队早早领先,垃圾时间太多。而出手太多的比赛是因为比赛艰难或者队友状态不好,需要他挺身而出。当然,以上也只是可能之一,具体是什么情况光靠这组数据并不能得出任何结论。
幸存者偏差 survivorship bias
数据分析中看到的样本是“幸存了某些经历”才被观察到的,进而导致结论不正确。
比如比尔盖茨、乔布斯、扎克伯格都没有念完大学,所以大家都应该退学去创业。这一结论的最大问题在于那些退学而又没有成功的例子,很多时候我们是看不到的。另一方面,他们是因为牛逼才退学,而不是退学才牛逼的,看,相关性/因果性真是限魂不散。
再比如 Uber 发现新用户有10块钱优惠券,但是平均评价却只有3星。相反,第二次再用的时候没有优惠券了,评价却高达4星半。这说明,不给优惠券用户评价会更高,果然用户虽然爱用优惠券,但内心还是觉得便宜没好东西的?很明显,幸存者偏差在这个例子里体现在那些打一星二星评价的用户,之后可能就没有第二次了。更明显的,这个例子是我瞎扯的。
样本跟整体存在着本质的不同
以知乎为例,会有种错觉人人年薪百万,985/211起,各种GFSBFM,天朝收入水平直逼湾区码工。然而一方面这是幸存者偏差,知乎大V们的发声更容易被看到(看,幸存者偏差也是阴魂不散)。另一方面,不要小瞧知乎跟天朝网民的差别,以及天朝网民跟天朝老百姓的差别–样本跟整体的差别。
类似的例子有水木的工作版块、步行街的收入和华人网站的贫困线。
过于追逐统计上的显著性 statistical significance
统计101告诉我们,要比较两组数是否不同,最基本的一点可以看它们的区别是不是统计上显著。
比如 Linkedin 又要改版了(我为什么要说又呢),有两个版本 A 和 B. 灰度测试发现,跟现有版本比起来,A 的日活比现有版本高20%,但是统计不显著。而 B 的日活跟现有版本虽然只高了3%,但是统计显著。于是 PM 拿出统计101翻到第二页说,来,咱们把统计显著的版本 B 上线吧。苦逼的数据科学家 DS 说,等一下!并不是所有时候都选统计显著的那一个,咱们再看看版本 A 的数据吧(具体分析略过一万字)。
很显然,这个例子也是我瞎扯的。
不做数据可视化,以及更可怕的:做出错误或者带误导性的数据可视化
数据分析提供的结果和建议不具有可行性
twitter通过分析文本数据发现。。。
算了,我编不出来,由此可见,不具有可行性的结果虽然是“理论正确‘的分析结果,然并卵。。。
不做数据分析
别笑,据以前的校内后来的人人现在不知道叫什么的 PM 说,这是真的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22