
数据分析中会常犯哪些错误,如何解决的?
经典的冰淇凌销量和游泳溺水人数成正比的数据,这并不能说明冰淇凌销量的增加会导致更多的人溺水,而只能说明二者相关,比如因为天热所以二者数量都增加了。这个例子比较明显,说起来可能会有人觉得怎么会有人犯这样的错误,然而在实际生活、学习、工作中,时不时的就会有人犯这样的错误。
举个栗子
数据显示,当科比出手10-19次时,湖人的胜率是71.5%;当科比出手20-29次时,湖人的胜率骤降到60.8%;而当科比出手30次或者更多时,湖人的胜率只有41.7%。
根据这组数据,为了赢球,科比应该少出手?并不一定如此。有可能科比出手少的时候是因为队友状态好,并不需要他出手太多。也有可能是因为球队早早领先,垃圾时间太多。而出手太多的比赛是因为比赛艰难或者队友状态不好,需要他挺身而出。当然,以上也只是可能之一,具体是什么情况光靠这组数据并不能得出任何结论。
-- 声明:非科比粉,路人偏黑。
幸存者偏差 survivorship bias
数据分析中看到的样本是“幸存了某些经历”才被观察到的,进而导致结论不正确。
比如比尔盖茨、乔布斯、扎克伯格都没有念完大学,所以大家都应该退学去创业。这一结论的最大问题在于那些退学而又没有成功的例子,很多时候我们是看不到的。另一方面,他们是因为牛逼才退学,而不是退学才牛逼的,看,相关性/因果性真是限魂不散。
再比如 Uber 发现新用户有10块钱优惠券,但是平均评价却只有3星。相反,第二次再用的时候没有优惠券了,评价却高达4星半。这说明,不给优惠券用户评价会更高,果然用户虽然爱用优惠券,但内心还是觉得便宜没好东西的?很明显,幸存者偏差在这个例子里体现在那些打一星二星评价的用户,之后可能就没有第二次了。更明显的,这个例子是我瞎扯的。
样本跟整体存在着本质的不同
以知乎为例,会有种错觉人人年薪百万,985/211起,各种GFSBFM,天朝收入水平直逼湾区码工。然而一方面这是幸存者偏差,知乎大V们的发声更容易被看到(看,幸存者偏差也是阴魂不散)。另一方面,不要小瞧知乎跟天朝网民的差别,以及天朝网民跟天朝老百姓的差别--样本跟整体的差别。
类似的例子有水木的工作版块、步行街的收入和华人网站的贫困线。
过于追逐统计上的显著性 statistical significance
统计101告诉我们,要比较两组数是否不同,最基本的一点可以看它们的区别是不是统计上显著。
比如 Linkedin 又要改版了(我为什么要说又呢),有两个版本 A 和 B. 灰度测试发现,跟现有版本比起来,A 的日活比现有版本高20%,但是统计不显著。而 B 的日活跟现有版本虽然只高了3%,但是统计显著。于是 PM 拿出统计101翻到第二页说,来,咱们把统计显著的版本 B 上线吧。苦逼的数据科学家 DS 说,等一下!并不是所有时候都选统计显著的那一个,咱们再看看版本 A 的数据吧(具体分析略过一万字)。
很显然,这个例子也是我瞎扯的。
不做数据可视化,以及更可怕的:做出错误或者带误导性的数据可视化
比如 这个回答里提到的
「数据会说谎」的真实例子有哪些? - 谢科的回答
在趋势图中,为了说明增长趋势多明显,把Y调成不从0开始。这样差距会看起来很大,增长很大,但是如果把Y轴从0开始看的话,会显得基本没有差距。
数据分析提供的结果和建议不具有可行性
twitter通过分析文本数据发现。。。
算了,我编不出来,由此可见,不具有可行性的结果虽然是“理论正确‘的分析结果,然并卵。。。
不做数据分析
别笑,据以前的校内后来的人人现在不知道叫什么的 PM 说,这是真的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04