京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中会常犯哪些错误,如何解决的?
经典的冰淇凌销量和游泳溺水人数成正比的数据,这并不能说明冰淇凌销量的增加会导致更多的人溺水,而只能说明二者相关,比如因为天热所以二者数量都增加了。这个例子比较明显,说起来可能会有人觉得怎么会有人犯这样的错误,然而在实际生活、学习、工作中,时不时的就会有人犯这样的错误。
举个栗子
数据显示,当科比出手10-19次时,湖人的胜率是71.5%;当科比出手20-29次时,湖人的胜率骤降到60.8%;而当科比出手30次或者更多时,湖人的胜率只有41.7%。
根据这组数据,为了赢球,科比应该少出手?并不一定如此。有可能科比出手少的时候是因为队友状态好,并不需要他出手太多。也有可能是因为球队早早领先,垃圾时间太多。而出手太多的比赛是因为比赛艰难或者队友状态不好,需要他挺身而出。当然,以上也只是可能之一,具体是什么情况光靠这组数据并不能得出任何结论。
-- 声明:非科比粉,路人偏黑。
幸存者偏差 survivorship bias
数据分析中看到的样本是“幸存了某些经历”才被观察到的,进而导致结论不正确。
比如比尔盖茨、乔布斯、扎克伯格都没有念完大学,所以大家都应该退学去创业。这一结论的最大问题在于那些退学而又没有成功的例子,很多时候我们是看不到的。另一方面,他们是因为牛逼才退学,而不是退学才牛逼的,看,相关性/因果性真是限魂不散。
再比如 Uber 发现新用户有10块钱优惠券,但是平均评价却只有3星。相反,第二次再用的时候没有优惠券了,评价却高达4星半。这说明,不给优惠券用户评价会更高,果然用户虽然爱用优惠券,但内心还是觉得便宜没好东西的?很明显,幸存者偏差在这个例子里体现在那些打一星二星评价的用户,之后可能就没有第二次了。更明显的,这个例子是我瞎扯的。
样本跟整体存在着本质的不同
以知乎为例,会有种错觉人人年薪百万,985/211起,各种GFSBFM,天朝收入水平直逼湾区码工。然而一方面这是幸存者偏差,知乎大V们的发声更容易被看到(看,幸存者偏差也是阴魂不散)。另一方面,不要小瞧知乎跟天朝网民的差别,以及天朝网民跟天朝老百姓的差别--样本跟整体的差别。
类似的例子有水木的工作版块、步行街的收入和华人网站的贫困线。
过于追逐统计上的显著性 statistical significance
统计101告诉我们,要比较两组数是否不同,最基本的一点可以看它们的区别是不是统计上显著。
比如 Linkedin 又要改版了(我为什么要说又呢),有两个版本 A 和 B. 灰度测试发现,跟现有版本比起来,A 的日活比现有版本高20%,但是统计不显著。而 B 的日活跟现有版本虽然只高了3%,但是统计显著。于是 PM 拿出统计101翻到第二页说,来,咱们把统计显著的版本 B 上线吧。苦逼的数据科学家 DS 说,等一下!并不是所有时候都选统计显著的那一个,咱们再看看版本 A 的数据吧(具体分析略过一万字)。
很显然,这个例子也是我瞎扯的。
不做数据可视化,以及更可怕的:做出错误或者带误导性的数据可视化
比如 这个回答里提到的
「数据会说谎」的真实例子有哪些? - 谢科的回答
在趋势图中,为了说明增长趋势多明显,把Y调成不从0开始。这样差距会看起来很大,增长很大,但是如果把Y轴从0开始看的话,会显得基本没有差距。
数据分析提供的结果和建议不具有可行性
twitter通过分析文本数据发现。。。
算了,我编不出来,由此可见,不具有可行性的结果虽然是“理论正确‘的分析结果,然并卵。。。
不做数据分析
别笑,据以前的校内后来的人人现在不知道叫什么的 PM 说,这是真的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20