
小白学数据分析--Excel复合图之复合雷达图
最近和同行交流时看到一个复合图,该图是雷达图和饼图的组合图,看过觉得很有新意,自己经过尝试发现制作不是很复杂,实用性也比较好,今天就简单说说这个图的做法。今天就要简单的说说怎么做一个这种复合图。
首先我们来看两个图:
这种复合图在某些情况下能够展示出更多的信息,而同时阅读者不会感觉到很混乱。对于我们平时要完成年度或者季度的游戏收入分析,或者人气分析师很有帮助的,目前的主要应用还是在收入方面比较值得推荐。下面就说说怎么制作第二个复合雷达图。
数据展示需求
我们持有一份2011年度游戏的每个月的收入数据,我们希望知道每个季度的情况以及每个季度中那几个月是收入的主要构成(因为每个季度中,总有一个或者两个月的收入是占据多数的)。如果按照传统的作图方式我们需要一个饼图(查看每个季度的收入情况)、一个雷达图或者直方图(每月收入情况)。此处我们可以利用复合雷达图完成这个需求。
制图过程
1.插入圆环图
第一步我们要先插入一个圆环图,此环节的目的在于我们区分四个季度的标志:
此时我们只做了一个圆环图,填充辅助列的数据,完成四个季度的标示。
2.完成饼图(每个季度的收入)
这一部分要注意的是,新出现的饼图会在中心的圆圈部分,注意调整好颜色和尺寸,如下图所示:
外围代表的是每个季度,内部的饼图代表每个季度的收入情况,这样我们就完成大部分工作,当然这里的外部圆环的大小自己可以调节,有人说,简单的办法就是一个圆饼图就行了,外部加上标签,这种做法也可以,只是美观上稍有不足。
3.加上雷达图,表示每个月的收入情况
以上的两步都是简单显示每个季度的情况,现在我们把每个月的收入也加进去,这样,显示出的效果和信息量就加大了,加入雷达图的操作,比较简单,首先也是在原图选择数据,添加每个月的数据,此时的图会变成如下的形式:
可以看到外围是变成了又一圈圆环的形式,不过不要紧,我们此时点击外围的圆环,右键更改图标样式,选择雷达图就OK了
这样我们就完成了一个复合的雷达图制作,这种图其实我们只要制作一次就可以了,以后直接使用模板就可以了。
当然了有时候为了表述问题的清楚,我们所采用的图表不是越这样复杂越好,有时候也是需要简单的图就可以说明问题的,就避免选择这样复杂制作的图。毕竟图是辅助说明问题的。但是无论怎样,我们都要讲究制作的图的精良。这点是很重要的。因为恰当的图示,就会恰到好处的说明问题,此处给大家分享一个关于留存率表示的图标,我觉得这种形式很不错。
这里只是展示了一种展示留存数据的办法,往往我们以前的留存展示只能是展示某一天新登用户的情况,或者只能展示比如次日留存率在一段时间内的情况,上述的展示方式,其实我觉得更加灵活一些,平常我也喜欢用这种方式来展现留存率的情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03