
小白学数据分析--数据指标 累计用户数的使用
小白学数据分析--à数据指标累计用户数的使用
累计用户数是指注册用户数的累计,即可以认为是新用户的累计。在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如:
那么这个指标究竟有什么用?以前作为我自己也没有想到什么比较好用的方式去分析这个数据,既然存在了这个指标,就有存在的价值。此处,我所提到的分析思路和方法也是基于电商的一些分析方法,且对于累计用户数的分析,还具有延展性,能够完成一些更深入的分析,今天就简单的来说说这个指标的分析。
可以想象的是,如果根据累计用户数来做一条曲线的话,这个曲线应该是呈现逐渐增长的形式,且不断增长,然而受到版本更新,新市场开拓,季节影响因素,该曲线是会发生变化的。如下图所示:
从上图可以看到,我们可以把改图分成几个时期,比如在第一个拐点我们可以定义为导入期,该阶段是用户量的引入时期,比如我们有时候游戏进行小范围的测试,之后进入到了快速的增长期,历经过了增长期,我们发现其斜率发生了变化,符合线性回归,当然这不是唯一的形式,根据不同的游戏在其增长期之后的累计用户变化还要根据实际情况确立。
然而我们这里只能是总体上衡量我们目前游戏用户的总量,以及预测后期的用户量的走势,包括活跃情况,以及收入情况的预测。
但是我们有一个疑问,单单看这个图能分析出什么呀?只是确定不同的时期而已?
其实这个图的分析我们还要确立一条曲线,这条曲线就是老用户比例曲线,通过结合老用户比例曲线和用户总量的曲线结合分析,就能够得到更好的分析结果。这种组合的方式分析的结论一般有几种结论。
1)负增长型
浅色的曲线代表的是老用户的比例,通过老用户比例的变化并结合累计用户的变化,我们基本上能够看到游戏目前的用户量的变化和走势,如上图所示,经历过了增长期后,在随后稳定的累计用户阶段,我们能够看到老用户的比例实际上是开始走下坡路了,即随着累计用户的不断,其活跃用户的比例其实是向下走。这点,我们可以通过累计用户数和老用户百分比进行相关性分析,是呈负相关的。这种负增长的形式,便于我们及早发现一些游戏的问题,从宏观上把控游戏质量。这种负相关,我们可以再看看日活跃的曲线来分析。此处明显看到,日活跃是在增长以后,又开始了下降,根据这种下降我们可以预测收入和人气数据。
2)保质型增长
所谓保质型增长其实就是用户量不断增长,但是老用户的比例却没有出现下滑的类型,其隐藏的含义,就是我们的活跃用户是处于增长时期的,保质型增长可以帮助我们在一段时间内能够预测游戏收入情况、用户的增长情况。此处我们再列出来日活跃用户的曲线:
3)断层型增长
所谓断层性增长是老用户比例先高后低再增长的形式,这种情况比如我们新渠道的开拓,大型版本的更新[影响范围和跨度较大],但是多数时候是受制于新的渠道和市场的开拓,此时也要结合累计用户比例的变化情况来分析,也许有人此时会问,那么直接使用新登和活跃用户的变化不是更直接吗?此处加上累计用户的目的就在于从另外一个角度说明游戏的目前变化状态情况[总量与现有老用户的关系]
然而这种变化情况下,如果我们要进行一些预测分析,其难度其实很到,因为很难去把控在下一个阶段的数据走势和变化,之所以我们这里做的这种分析,目的就是为了服务于预测分析。
4)稳健性增长
所谓稳健性的增长,就是老用户增长是随着累计用户数的增长同步的关系,说白了是一种正相关,即总量涨,老用户也在涨。
而实际的活跃用户曲线也确实如此:
总结
说了这么多的废话,为什么还绕个弯子做这些分析呢?
原因其实很简单,老板需要下一个阶段的游戏收入、人气情况,然而对于游戏去做预测这个事本身来说就存在很大的误差,因为受到的影响因素实在很多,因此下一个阶段的预测分析出了要考虑这些因素的同时还要考虑其他的因素,而这些因素就是你的游戏目前处于哪个时期,是稳健的增长,还是保质型增长,还是负增长,或者断层性增长。作为对于未来一段时间的分析,我们必须要参考现阶段的用户变化情况,这是一个参考依据。
如果我们只是列出来一条目前的活跃用户和新登用户的变化曲线,我们不能很好的判断游戏处于的时期和其他信息,比如用户总量的情况与老用户的留存比例等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16