京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的学习与评价:学习证据源自何处
大数据技术已逐步进入学校教育当中。数据量的大小不是我们判断其是否为“大数据”的唯一依据,我们还应从数据收集源头、数据节点规模、测量对象、机器作用及数据分析者职责等角度对其进行综合认识。

数据收集源头
得 益于信息技术的迅猛发展,人们可以将学习证据的收集嵌入到整个学习过程中。这些嵌入式数据节点可能很小,或是为学习者提供的反馈;或是个性化学习环境中为 个别学生下一步学习做出的决策;它们或聚合到更高层次,为学习者特征分析提供依据;或在学校、班级、小组、个体层面生成数据,为教育管理中的问责服务。
坐 拥更全面的数据源,人们有可能超越传统的测试手段。嵌入式评估将模糊形成性评价与总结性评价的界限。当学习过程嵌入了数据收集功能时,人们可以追踪学习者 的学习活动、记录学习过程、分析学习成果的成因和品质。学习分析与数据挖掘可以归纳出学习进展的总结性信息;它同时又能全方位地深入到具体项目以及学习者 所产生的任何一个数据节点中,浏览过程性信息。在此背景下,“反思性教学法”将取代传统的“教学—评价”二元教学法。传统的形成性评价与总结性评价是不同 目的、不同形式的数据收集方式;未来,我们可能需要“前瞻式学习分析”与“回顾式学习分析”,它们所处理的不是不同批次的数据,而是针对同一批数据从前瞻 或回顾的角度进行分析和利用。
数据节点的规模
与 大教育中大数据的“大”一样重要的是,其数据节点的“小”。事实上,这是数据变得更“大”的唯一原因。“小”节点可能表现为学习者回答的一个问题、在模拟 情境中的一个动作,或在论坛当中的一次评论。更“小”的形式,还可能是一次按键、一个时间戳、导航路径中的一次点击、维基百科或博客中的某次编辑历史。学 习本身并没有变得更“大”,只是我们可以附着记录的学习事件变得更“小”了,它们的总和也因此前所未有地变大,以至于如果没有计算机综合技术的支持,人类 是难以处理和驾驭它们的。
测量的对象
经 典测试大多沿袭以下路线:学习中的认知发展——测试中的观察——将测试结果作为认知的证据进行解释。传统的测试对象单独位于学习过程之后,并支持回顾式解 释。然而,在以机器为中介的学习中,人们对学习证据的关注点已经转移到真实的知识人工制品上,并倾向于记录学习者利用学科知识所进行的实践,因为知识表征 可能存在于学科知识实践的人工制品及其建构过程之中。换句话说,我们分析的重点不在于学习者所能思考的内容,而在于他们所做的知识表征。
这 些人工制品含纳了许多复杂认知的表现,具体如科学实验报告、人类或社会现象报告、历史学论文、带有注释的艺术品、视频故事、商业案例研究、发明或设计的物 品、数学或统计案例、田野研究报告或根据用户故事编写的可执行的计算机代码等。这些人工制品是可识别的、可评估的、可衡量的。它的源起是可被验证的,其构 建过程中的任何一个步骤都是可被追溯的。围绕知识加工展开的数据收集范围也被极大地拓展:自然语言处理、任务所花时间、同行或自我回顾、同行评议、编辑历 史和导航路径等。
机器的作用
大 数据并不完全依赖由机器生成,尽管机器可以通过人格化的用户界面表现出非凡的智力。计算机仅是一种人类沟通的技巧、对原有文本结构的扩展。它是人类认知的 补充体、社会思想的延伸、文明传承史中的一部分。在大数据时代,通过收集和计算大量前人的判断,人类的智慧得以放大。数以百万计的、微小的人类事件被记录 在可以聚合的数据节点之中,为教师、教育项目设计师或研究人员提供重要证据。机器看起来十分聪慧,但它们聪慧的意义仅限于它们所收集并计算的众多人类智 慧,就像书籍、图书馆和教师过去所做的那样,只不过它们比真人教师和学习者所能处理的数据量更大罢了。计算机的智慧是有限的,它们只不过是记录和外化人类 思想的机器而已。
数据分析师职责
现 如今,人人都是数据分析师。在软件工程师和用户界面设计师创造的环境中,用户没有必要掌握其中的模糊统计公式,因为突出的学习信息将以可视化的方式呈现, 用户可以利用它们深入追溯具体的学习序列。教师通过访问数据来了解学生并调整教学。在这种证据化的环境下,教师可以也应该是位研究者。这可能需要他们具备 一种新型的数据读写能力,掌握数据分析知识,以支持基于证据的决策。这些数据也可以呈现给学生,有助于他们进行迭代反馈、形成性评价和进展概述,学生将成 为掌控自己学习进程的研究者。此外,专业研究者也可以使用同批数据。大数据时代,传统的研究者与实践者、观察者与被观察者之间的区别逐渐模糊。这种特性彰 显的是大数据的可访问维度,在某种程度上也决定了数据的外观、形式与目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01