
小白学数据分析--怎么看待数据处理
本来这算不上一篇文章,但是我仍旧写了,除了解决一个小问题还要说点其他的关于数据分析的想法,首先先解决一个小问题。
第一部分
问题描述:处理游戏帐号信息时发现有重复的帐号,比如帐号A有N个重复项,希望留下1个重复帐号,但是要把剩下N-1个删除重复帐号删除。具体的原数据(**)模拟如下:
而我们希望得到的最终处理数据格式如右侧一列(绿色)所示。针对这个处理,其实有很多方法,可以参看小蚊子的《谁说菜鸟不会数据分析》,比如使用条件筛选就能搞定,今天不谈这个方法,说说另一种思路。
首先我们对于原数据进行排序,怎么排序都OK,重要的是重复项会在一起,如下图所示:
之后我们使用IF和Exact函数嵌套使用,解决这个问题,操作如下:
增加一列,叫做标识项,并写下公式=if(exact(A2,A3),1,2),关于Exact()和if()函数的使用介绍这里不再累术,自行查阅Excel函数帮助文档就OK了,具体公式如下图显示:
这里公式的秘密和为什么不解释了,估计大家看到这里都明白了,下面我们要继续操作,解决问题,之后选中第一行,快捷键“Crtl+Shift+L”打开自动筛选功能,筛选标识项为“1”的数据,如下图:
之后,选择这几行数据,然后删除,之后打开再次打开筛选,选择全部,结果数据如下所示:
但是到了这样这一步,其实已经完成了,可是很多人还是有疑问,那些空白行怎么办啊,我们需要数据都是像最开始的那个绿色的格式最好了,这样有空白的位置不好,至于这个问题,这里不回答了,大家自己想一想,其实很简单,非常容易解决。期待大家的答案。
第二部分
这一部分,其实还是想发一些牢骚和学习数据分析的建议,作为数据分析师,首先是先把数据处理和优化工作做好,当然这之前必须要进行商业理解,把问题搞明白,才能后期把数据提取出来,进而才能借助模型、算法进行数据处理,模型发布,评估,分析,这是一个完整的CRISP-DM,数据处理优化要用去整体流程80%的时间,因此快速有效掌握数据提取,处理方法很关键,其意义不仅仅在于效率效能的提升,最关键的是锻炼思维和形成一套自己的方法。
你说的有点夸大了吧?
很多人会有这个疑问,很正常,大多数情况下,我们喜欢把数据需求明确,然后让DBA同志帮助我们取数据,解决数据处理过程,但是往往需求理解的差异,导致了后续CRISP-DM全部错误,而且相当不容易发现,所以很多时候我们要自己来做,一个DMA同时也要会一点SQL,数据量非常大时自己倒入数据库,练习一下SQL操作。
当然这是适用于那些学过计算机的人,很多DMA是没怎么学过SQL,因此就会基本上借助Excel、SPSS解决数据处理,这个时候其实非常关键,早期我喜欢拿着网上的文档或者什么宝典来解决问题,发现没用,因为你看了你也记不住,你也不会用,只有当问题摆在面前时,你才有需求,要学习,但是往往又不能找到合适的答案,所以很多人借助别人力量解决,但是解决完了,你仍旧不会,下次问题摆在你面前,你还是不会。
所以,请不要逃避问题,有问题才是你学习Excel,数据处理的最佳时期和机会,不要小看摆渡,如果你能从浩瀚的搜索中找到解决你问题的办法,这是一种能力,如果借助那个答案,你有新的更好的解决之道这就是提升了。这是一种学习能力,通过问题学习。
其二,表述问题,找到自己的习惯。在搜索上如何把自己的问题表述出来,寻找答案,这是你的本事,就像你要求助于他人解决这个问题时,你依然要别人先理解你的需求,才能解决一样,在这一个问题肯定有很多的办法来解决,但不是每个办法都适合你,但是总有一个适合你,因此找到自己解决这种问题的习惯,以后越用越好,融会贯通。
其三,你要学会排列组合。这个排列组合不是真的排列组合,其实是说,日常我们在进行数据处理时,基本上80%以上的工作只需要20%左右的函数和方法就可以搞定了,比如vlookup,sumif,countif,if,条件筛选,排序等等,这也是符合幂律分布的。所以,尽管我们面临不同的问题和需求,但是通过这些公式的嵌套,组合,最后基本上都能解决我们的数据处理和分析需求,而如何优化,组合这就是看你的能力和发挥了,难道你说这不是一种锻炼吗?DMA的工作不仅仅是对得出来分析结果进行分析,在这个过程中,你如何应对产生的一系列问题都将有助于你发散思维,解决最后的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07