
大数据最具潜力的三大应用领域
大数据在企业商业智能、公共服务和市场营销三个领域拥有巨大的应用潜力和商机。
今天,大数据似乎成了万灵药,从总统竞选到奥斯卡颁奖、从web安全到灾难预测,正如那句俗语:“当你手里有了锤子,什么都看上去像钉子。”当IT经理成功部署一套Hadoop系统后,任何事看上去都与大数据有关(事实也是如此)。类似的事情在云计算的普及中也出现过,一开始大家认为所有的IT都可以搬到云端,而现实是我们依然需要虚拟化技术和基础设施。
对于大数据来说,如果IT经理们初期不能正确选择应用领域,有可能会导致达不到期望值,招致麻烦。其实,综合来看,未来几年大数据在商业智能、政府服务和市场营销三个领域的应用非常值得看好,大多数大数据案例和预算将发生在这三个领域。
过去几十年,分析师们都依赖来自Hyperion、Microstrategy和Cognos的BI产品分析海量数据并生成报告。数据仓库和BI工具能够很好地回答类似这样的问题:“某某人本季度的销售业绩是多少?”(基于结构化数据),但如果涉及决策和规划方面的问题,由于不能快速处理非结构化数据,传统的BI会非常吃力和昂贵。
大多数传统BI工具都受到以下两个方面的局限:
首先,它们都是“预设-抓取”工具,由分析师预先确定收集什么数据用于分析。
其次,它们都专注于报告“已知的未知”(Known unknowns),也就是我们知道问题是什么,然后去找答案。(而大数据会给出一些未知的未知,也就是你没有想到的一些问题的结果)
传统BI工具主要用于企业运营,侧重于成本控制和计划执行报告。
而大数据技术最主要的功能/应用是ETL(Extract、Transform、Load)。将近80%的Hadoop应用都与ETL有关,例如在导入Vertica这样的分析数据库之前对日志文件或传感器数据的处理。
今天计算和存储硬件变得非常便宜,配合大量的开源大数据工具,人们可以非常“奢侈”地先抓取大量数据再考虑分析命题。可以说,低廉的计算资源正在改变我们使用数据的方式。
此外,处理性能的大幅提高(例如内存计算)使得实时互动分析更加容易实现,而“实时”和“预测”将BI带到了一个新的境界——未知的未知。这也是大数据分析与传统BI之间最大的区别。
今天的大数据技术还处于战国时期,未来几年,随着企业间的兼并和新产品的不断推出,BI厂商们将能推出完善的,让CEO感到满意的“大数据套件”,但这并不意味着企业IT经理们的工作将受到威胁。因为正如云计算在理想和现实间达成妥协一样,大数据也会经历类似的发展过程。传统的BI工具将与大数据分析并存。
公共服务
大数据另外一个重大的应用领域是社会和政府。如今,数据挖掘已经能够预测疾病暴发、理解交通模型并改善教育。
今天,城市正面临预算超支、基础设施难题以及从农村和郊区涌入的大量人口。这些都是非常紧迫的问题,而城市,也正是大数据计划的绝佳实验室。
以纽约这样的大都市为例,政府公共数据公开化、以及市民生活的高度数字化(购物、交通、医疗等)等都是大数据分析的理想对象。
客观的市政数据,是消除争端,维系公民社会的最佳纽带。当然,前提是让公民能够访问这些数据。苹果的Siri和谷歌的Google Now都具备成为个人化助理的潜力。当然,我们还需要更多的产品和技术让数据分析结果更容易被公众理解和接受(数据可视化)。此外,IBM的Watson以及Wolfram Alpha这样的人工智能技术还能实现与用户的互动。
今天,智能手机(以及Twitter等社交网络)的普及让人类社会首次实现了公民的联网。应用程序商店实时上已经打通了政府和公民之间的应用层面的通道。(例如奥运期间伦敦警察厅发布的iphone通缉程序)。伴随着各国政务的数字化进程,以及政务数据的透明化,公民将能准确了解政府的运作效率。这是不可逆转的历史潮流,同时也是大数据最具潜力的应用领域之一。
市场营销
大数据的第三大应用领域是市场营销。具体来说,是提升消费者与企业之间的关系。(卖得更多、更快、更有效率)
今天,最大的数据系统是web分析、广告优化等。今天的数字化营销与传统营销最大的区别就是个性化和精准定位。
如今,企业与客户之间的接触点也发生了翻天覆地的变化,从过去的电话和邮件地址,发展到网页、社交媒体账户、博客等等。在这些五花八门的渠道里跟踪客户,将他们的每一次点击、收藏、“顶”、分享、加好友、转发等行为纳入企业的销售漏斗中并转化成收入是一个巨大的挑战。也就是所谓的“360度客户视角”。
大数据已经与在线营销交织在一起,其应用可以分为两大类:
首先,从线上到线下。配备了NFC近场通讯技术的智能手机和基于位置的签到正在成为营销人员的最新利器。他们将能跟踪商场人流,把在线零售的分析优化应用于线下。
其次,数据分析工具将更加容易使用(面向中小企业应用的大数据创业非常火爆),中小企业也许没有BI平台,但他们都有平板电脑和智能手机,移动版客户智能分析将会改变企业使用营销工具的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09