大数据的五大进化趋势
仅仅数年时间,大数据就从大型互联网公司高管嘴里的专业术语,演变成了决定我们未来数字生活方式的重大技术命题。无论是消费者,传统企业还是互联网创业公司,对大数据趋势的洞察和把握都是改变命运的重要思考。为了方便大家理解大数据将如何改变我们生产和消费数据的方式,GigaOM作者Derrick Harris在下面罗列了大数据的五大发展趋势,也欢迎读者留言评论,说出你们眼中的大数据趋势。
一、数据科学的普及化
在数据科学领域,最重大的变化来自数据科学家人才库的壮大。新的在线教育平台(如Coursera和Udacity)向学生传授各种数据科学知识,从基础统计到自然语言处理和机器学习。此外,Oxdata这样的产品还致力于让R这样的经典统计分析工具更加易用和强大。而Quid则让机器学习和人工智能与优美的用户界面无缝结合。Kaggle这样的平台则为预测型分析提供了一个众包解决方案。
一个总的趋势是,最终任何一个有点想象力的,懂点基本的计算机科学知识,但是商业嗅觉敏锐的人将能够更好地利用他们手头的数据。大数据分析将不再高高在上,Datahero、INnfogram和Statwing这样的公司都在试图让门外汉也能从事数据分析,给出漂亮的数据分析结果。
二、Hadoop的MapReduce时代终结
Hadoop作为单一的MapReduce运行平台的日子已经一去不复返了。进化开始于Apache hadoop的2.0版本,新增的YARN功能让Hadoop支持新的处理框架,例如Cloudera的商业发行版目前包括一个SQL查询引擎,以及一些围绕mapReduce的互动分析方法。要想让数据分析师访问Hadoop数据,Hadoop还必须支持更多的功能。
用Platfora进行基于Hadoop的BI分析
总之,MapReduce对于Hadoop来说越来越不重要了。Hadoop社区目前最关心的事情是如何让Hadoop平台的分布处理支持实时分析,更好的服务于下一代数据分析应用(例如商业智能的实时互动分析)。如果Hadoop在这方面进展缓慢,将很快被Storm和Druid这样的技术取而代之。
基于Hadoop分布式文件系统HDFS之上的HBase NoSQL数据库就是一个很好的例子,证明摆脱MapReduce的框架制约后,Hadoop还有很大的价值拓展潜力。目前Facebook和eBay等互联网公司已经开始使用HBase来跑交易应用,而Drawn to Scale和Splice Machine等创业公司则使用HBase作为交易SQL数据库的基础。而一些新的产品或项目,如Graph database Giraph使用HDFS文件系统是因为其可扩展性、相对成熟,而且有一个不断成长的生态环境。
更多人使用大数据应用
大数据的价值在于应用和普及,而不仅仅是数据科学家手里的高深工具。未来越来越多的人都都将能够使用大数据应用,例如开发者。创业公司Continuuity、Infochimps甚至Precog(大数据BI引擎)都在开发面向开发者的大数据工具,使开发者能更容易地将应用与大数据后端对接,这方面的工作大大简化,有时候开发者只需要在程序中植入一个脚本或者一段代码。
大数据应用普及的另外一个趋势是产品化,针对特定应用场景开发出开箱即用的大数据产品,例如分析用户行为、网络安全、人工智能、客户服务等的大数据应用。最早采用大数据技术的公司如Google、Facebook等需要自行开发相关大数据应用,但是对于更多的企业来说,现成的产品才是引爆大数据商业价值的关键。其实今天很多移动或互联网应用中都已经有了大数据的影子,从用户购买决策到好友匹配等。
机器学习无处不在
过去几年,机器学习(Machine Learning)逐渐流行开来,容易让人误以为机器学习并不难。机器学习的流行原因很简单,在一个消费者(以及广告主)需要更多个性化,而计算机系统正被四面八方飞速增长的数据包围的年代,编写能够透视数据的模型总是一件诱人的事情。
以下是我们梳理的,依赖机器学习的一些应用(网站):Prismatic, Summly, Trifacta, CloudFlare, Twitter, Google, Facebook, Bidgely, Healthrageous, Predilytics, BloomReach, DataPop, Gravity.
用Prismatic分析个人兴趣图谱
现在,很难想象一家新成立的科技公司,完全不考虑用机器学习模型让他们的产品或者服务更加智能。甚至微软公司都将机器学习视为一个新的业务和收入增长点而投入巨资。
移动数据将成为人工智能(AI)的引擎
在天网发动机器推翻人类统治之前,我们手里的移动电话已经比我们自己更了解我们的下一步举动。Google的Project Glass增强现实眼镜已经出炉,类似的移动应用将捕获和产生大量个人数据。而机器学习、语音识别等技术,则能帮我们充分利用这些数据。
如今,移动应用知道我们去哪,我们的朋友是谁,我们的日程是什么,我们在网络上搜索什么。新一代应用如Siri、Saga和Google Now都试图扮演智能个人助理的角色,我们的电话知道我们在说什么,了解我们常去哪家餐馆吃饭,知道我们何时回家,工作或郊游。这些应用的开发者声称这些应用能为用户选择最佳赴约路线,城里某处有家从未光顾过的餐馆有我们最喜欢的菜。
一场大规模竞赛已经启动,开发者比拼谁的应用最智能,整合的数据最全面,以及如何在四寸大的屏幕上交付最美妙的用户体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03