
大数据时代,石化企业应该如何进行数据分析
一、大数据应用现状
1、数据量在不断增加,且数据结构不断复杂。
根据IDC 监测,人类产生的数据量正在呈指数级增长,大约每两年翻一番,这个速度在2020 年之前会继续保持下去。这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。于此同时,大量新数据源的出现则导致了非结构化、半结构化数据爆发式的增长。
这些由我们创造的信息背后产生的这些数据早已经远远超越了目前人力所能处理的范畴,大数据时代正在来临…
2、中国企业的大数据现状
目前,中国企业500强的日数据生成量近一半都多于1GB,更有4.9%的企业 超过1TB。中国企业级数据中心数据存储量正在快速增长,非结构化数据呈指数倍增长,如果能有效的处理和分析,非结构数据中也富含了对企业非常有价值的信息。
二、大数据分析在石化企业的应用
1、大数据分析在石化企业应用的主要方面
石化行业具有多环节、多地域特色,各环节的优化是石化行业最关注的大数据应用领域。石化行业大数据分析应用多分布于供应链优化、库存管理、资金统一管理和生产监管优化四个模块。
2、石化企业数据特征
石化行业企业数据的数据量大,存储格式复杂,数据分散,类型众多,不同类型数据包含的信息各具特点,综合各种数据所包含的信息才能真实反映企业实际状况。
石化行业企业对大数据分析解决方案的需求集中体现在:供应链优化、库存管理、资金统一管理、生产和安全监管的分析。
石化企业应用大数据分析需要解决的问题,主要为缺少数据全方位分析方法、ERP软件处理能力差、实时数据分析能力差、海量数据处理效率低,其分布如下图:
三、大数据分析在石化企业的价值
来自IBM在全球的调研表明,大数据分析在支持创收策略、实现成本控制方面的价值正在稳步上升。此外,近40%的企业在采纳大数据分析后的六个月内就实现了快速的投资回报(ROI)。
通过分析方法和解决方案,可以在大量数据中系统性的发现有用的关系,即实现经验规律的可重复性。通过建立拟合不同模型研究不同关系,直到发现有用信息,即用于分析原因解决问题。发现潜在价值,预见可能发生的某种“坏的未来”并给出建议,即预测并提供解决方案。
实现大数据分析价值的三大要素:支持、信任和技能。应用大数据分析的企业需要管理层持续的支持,需要加强跨专业部门之间的信任,并具有深层次的业务知识和技能。
四、石化企业大数据分析的成果展示(恒逸集团)
1、恒逸大数据分析的目标需求
①大数据应用日益广泛,利用大数据分析为企业提供决策。
②随着公司的发展出现多个IT应用系统并积累了大量的数据,合理利用数据优化供应链、库存管理、生产成本控制和安全管理,提升公司的整体竞争力。
③公司发展提出了大数据时代下如何建设智慧工厂的问题
2、使用软件:帆软FineReport
3、成果展示:【本项目获得浙江省企业信息化创新项目奖】
①资金管理类-决策分析、业务统计
②人力资源分析
③供应链管理
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17