京公网安备 11010802034615号
经营许可证编号:京B2-20210330
先来一波养眼图~
4月10日,全都是美女的「数你最美」数据分析沙龙在北京苏州街纳什空间圆满举办。现场不仅有美女养眼,还有强大的干货分享。
四位美女嘉宾在现场分享了自己在数据分析行业的成长经历,C君当然忍不住深入「搭讪」了一番。聊完之后,C君觉得,姑娘,如果你想成为一名数据分析师,就大胆地上吧。虽然这个行业男同胞们占了大半壁江山,但如果姑娘们有决心有毅力,完全可以成为一名优秀而强大的从业者。在这一点上,男女并无差别。
四位嘉宾的PPT已经可以提供下载,请在CDA数据分析师微信公众号回复关键词「美女」获取下载链接和提取码。
嘉宾的现场录音整理将会搭配PPT以图文形式陆续发布在CDA微信公众号上,请持续关注。
本期分享第一篇:
如何在一年之内成为一名数据挖掘工程师?

不管是数据分析师还是数据挖掘工程师,我们的目标都是认识数据,从数据中发现需要的信息。
所需要的技能
做数据分析,统计的知识肯定是需要的,Excel、SPSS、R等是需要掌握的基本技能。
我是做数据挖掘的,所以重点讲一下数据挖掘方面的技能。我本身是学数学专业的,接触数学比较多。数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
举个栗子,比如朴素贝叶斯算法需要概率方面的知识,SKM算法需要高等代数或者区间论方面的知识。当然,你可以直接套模型,R、Python这些工具有现成的算法包,可以直接套用。但如果你想深入学习这些算法,最好去学习一些数学知识,也会让你以后的路走得更顺畅。
我们经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
工作内容
数据分析更偏向统计分析,出图,作报告比较多,做一些展示。知乎上有一个叫团支书的答主,他就比较偏向于数据分析。
数据挖掘更偏向于建模型。比如,我们做一个百货的数据分析。万达电商的数据非常大,具体要做什么需要项目组自己来定。百货数据能给我们的业务什么样的推进,我们从这一点入手去思考。我们从中挑出一部分进行用户分群。
消费者在商场购物消费会有一个刷卡的数据记录,万达会员卡的卡号信息以及购物记录也会在数据中呈现,数据体量是很大的。我们用这些数据做一个聚类,分成几个用户群,比如偏向亲子的、时尚女装和奢侈品的、汽车配饰的,分群之后再去给他们做推荐就相对更加容易。
我们做用户分群会用到一些聚类模型,比如K-means、K-means++等,处理数据的维度特别大,是300w*142维,如果全部拿来聚类,效果不太好,因为有一些是没有含义的,所以我们会进行降维。
降维一般会用到主成分分析,我们用的是深度学习的一个算法——Auto Encoder。它有一个输入层,一个隐含层,一个输出层,数据从输入层进去时会进行编码,从输出层出来时解码,比如我们把142维数据灌进去,在隐含层降成50维数据,输出还是142维数据。也就是说把一开始的142维数据投射到50维数据之后,再还原成142维,这142维与之前的142维数据之间的映射关系是一样的,那么我们就可以用中间50维的数据做聚类分析。
最后我们得到了一个评价指标,你可以理解为这个指标数值越小越好,越小代表各个值离中心越近。如果不用深度学习算法,得出的评价指标是20万左右,而降维之后得出的指标是600多,效果是很显著的。
我讲这个例子也是想告诉大家,如果你不具备数学知识,只是去套模型也可以做,但永远只是停留在入门阶段。大家如果想做数据挖掘工程师的话,我建议编程语言至少要会一门,数学方面至少需要线性代数、概率论和凸优化的知识,了解一些机器学习算法的推导,以及深度学习的算法。这个学习起来并不是特别难,我从毕业到现在有一年的时间,一些基本的算法已经了解的差不多了。
发展的建议
每个人都有自己的偏好。有的人会说,数学太难了,我不想做挖掘,就想做一些数据分析,做一些酷炫的分析图,这个当然可以。如果想要自己的职业生涯有长足发展的话,不要贪多贪杂,在某一个领域深入进去。你可以结合自己的兴趣,在那一个领域成为专家。
提高自己的技术和业务能力。技术能力相对来说是比较好提高的,学R或者Python这类简单的语言是很快的,Java或者C++会比较慢。当技术能力提高到一定程度的时候,就很难跟别人有技术上的差别了。可能工作一年的时候你只会R,等两三年之后相关的工具技术你都会了,这个时候你跟其他同事的区别就在于业务能力。
很多做技术的一开始会觉得技术就是特别牛特别厉害,但是光有技术并不能让你成为公司的核心成员,必须要提高自己的业务能力。如果你做的技术出的结果跟业务不相关,对公司无法产生效益,领导是不会要这个结果的,除非你是研究人员。
几个小tips
学历重要吗?
校招渠道比较看重学历,但是随着工作经验的增加,你的技术达到了一定的水平,你是二本三本实际上和985毕业的人并没有太大区别。当然,对于应届毕业生来说,学历高学校好更有优势,这是大厂的敲门砖。
也有人会问需不需要考研。考研要跟你以后的工作道路结合起来,如果想做数据挖掘,就可以选择考数学类专业的研究生,可以提高自己的竞争力。
以我的经历来说,我本科是在湖北一个很普通的学校,研究生报考武汉大学的计算数学专业。但因为两分之差,调剂到了基础数学。当时家人劝我服从调剂,好歹研究生是武大出来的。不过我的兴趣不在基础数学,这个专业也并不能给我想要从事的数据挖掘加分,还不如先在工作中积累一些实践经验,所以就放弃了读研。如果我工作几年之后需要提升能力,可以再去考个研究生,不一定非要现在就考。
转行可不可以学?
现在这个行业越来越火,很多人想要转行做数据分析。转行学数据分析师是可以的,但最好先去看一下招聘单位的工作内容,如果招聘要求懂PPT、Excel之类的就可以不要考虑了,因为这种通常招的是统计员,不是分析师,对你的职业道路不会有太大的帮助。如果要求会Python、R或者建模,你可以去尝试一下。可能别人不一定会要你,但如果你表现出足够的诚意和自学能力的话,依然有被录用的机会。
我大学读数学专业时只学了MATLAB,学了不到一年,当时在学校参加MATLAB建模比赛得了一等奖,觉得自己挺牛。但是在找工作时发现很多公司不用MATLAB或者SAS,因为比较贵,很多都会用开源的R。面试的时候,我说我不知道R是什么,领导说,给你两个星期,学。后来在工作里一点点看书,也就入门了。
跳到第四个问题,选数据分析还是数据挖掘?
很多人觉得数据挖掘很厉害,但是一转行就跳到数据挖掘是不太可能的。数据挖掘要求比较深的代码功底。
一开始我也不会写代码,毕业之后我去了一家公司,Title是中级数据分析师,但干的是数据挖掘的事儿。刚入职的一个月内,老板让我用Python出结果。之前没学过Python,我边学边做,这样把Python也学会了。后来在这家公司做过一个垃圾文本分类的项目,这个方面以前也没有接触过,就一边查资料一边自己做。一开始用公式套,但是准确率只有80%左右,我就开始看公式的推导,看懂公式原理之后就知道某些地方是可以挑优的,自己可以对算法做一些改进。不要只套公式,也要弄明白其中的公式推导,搞懂源代码,慢慢提高自己的代码能力。
怎么选公司
大公司当然是最好的。大公司一般走校招,如果你通过校招进了大公司,但是非核心的岗位,比如百度搜索方面的挖掘,当然是最好的,如果进入不了这样的岗位,不如去一些新发展起来的公司,比如美团、滴滴,这样的公司有一定的数据量,也会有一些比较强的人。
第三类公司是创业公司。如果是刚毕业最好不要选创业公司,风险比较大。你比较难以从表面上判断这家公司能不能存活下来,有没有牛人值得跟。而一些二线公司的业务骨干大多是从BAT过来的,具有比较丰富经验,跟着他们学习能让自己快速成长。
怎么面试
一定要诚实。不要造假工作经验和年限,没有必要,对自己也没有好处。毕业生求职时可以表现得真诚一点,不能说一上手就能做很多工作,但是可以展示自己的学习能力。
我也不是一开始就做数据挖掘,也是在工作中慢慢转。如果你真的想做这一行,就要有决心,不能着急。
讲个小故事,当时想转数据挖掘的时候,我不知道是选择Java还是C++。当时我投了很多数据挖掘岗位,我知道面试通过的可能性不大,但我就跟面试官聊天,请教经验。我说自己是数学专业毕业的,想要转做数据挖掘工程师,需要掌握哪些能力。面试官就画了一个图说,一个圆代表数学,一个圆代表计算机,我们需要的就是两个圆交叉的部分,如果编程语言求快的话可以先学Java;我接着问他需要看哪些资料等等,我们聊了差不多一个小时。其实很多老人带新人是很乐于分享的,多看前人的经验,帮助自己成长,一定会在这个行业有所收获。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27