
数据科学家做到这些,百万年薪不是梦
定义你自己
你是一个数据科学家?还是只是一个需要运用数据来做市场营销或者其他专业化工作的人?答案的不同决定了你在公司的自我定位和形象。如果你只是一个完全的数据科学家,那么你想进入市场岗位或是具体操作岗位几乎是不可能的。如果你是一个营销经理或业务主管,那么学习数据科学相关知识和语言可能能帮助你成为首席营销官或首席运营官。这也意味着你参与不同类型的问题,帮助企业解决复杂的问题,不仅仅是数据。你参与指导企业通过决策和投资。有机会的话去做更多的分析吧,它也会带来更多的就业机会。
重点放在价值上
数据科学对一个企业来说提供了许多有价值的建议,但当一天结束的时候,要看看这些有价值的建议是能增加收入还是能降低成本,或者是两者都有(增加利润)。原则上来说,省钱就意味着赚钱,然而在实践中,成本的降低和收入的增长不会一样。事实上降低成本可以用一些很简单粗暴的办法例如完全关闭企业。我的意思是,对于公司来说省钱是相对有限的,要提高效率才是重要的。重点是要为公司不断增长新的收入,去赚更多的钱。
去做一些比较轻松的问题
对一些高智商人群和技术人群来说很重要的个人特质就是会把解决“困难的问题”看成是有价值和令人钦佩的。事实上,科学家们常常陷入这个陷阱。是的,你解决了一个困难的问题,但是这对企业有帮助吗?什么是价值?应该花费时间在为企业创造价值的问题上,这些经常比解决一个高难度的问题要容易。当你解决一个问题时,你要问自己这对企业有什么帮助。
谈论数据科学
当你第一次得到一个数据科学家的工作的时候,你很可能会有几个有同样职位的同行。希望你的领导能把你们的积极性调动的很好,但很多企业是没有的。组织午餐和学习”的会议,当你提出一个观点或者关于数据科学的重要部分时邀请你的同事参与讨论,向你的同事们介绍一个很酷的数据可视化,展示一个目前公司的数据分析项目,看看数据科学是如果给企业带来提升的。这将极大增加你的人际网络。最重要的是,显示数据科学对财务的影响。
远离屏幕
如果你的目标是参与领导和改造一个组织,它将需要比写代码和做分析做的更多。在你的职业生涯的发展中,你将有机会不仅仅进行分析也学会在公司的业务操作模式。如果你在一家生产商品的公司工作,去工厂参观学习,学习你建模的过程。如果你的公司是针对人的服务,那么学会向客户服务。总之,真正学习业务!它会让你的数据更科学,使你成为一个更好的执行者!
目前几乎每一个行业都在投资数据采集和数据科学家,来发现数据的价值,然而所有的企业也都非常关注成本,尤其是人力成本。数据科学家在相当长时间内是许多企业的一个重点,那么对于数据科学家来说,明确自己的职业生涯非常重要。我们必须承认,很多数据科学家需要解决业务问题才对企业有价值。正如其他技术性很强的专业律师,医务人员、摄影师等等。一些专业真正被数字模型和自动化所威胁,我们应该期待新的商业模式出现,让那些获取数据科学好处的企业降低成本,当然也包括外包。
现在大量数据科学的消耗在一些对企业数据的整理和准备上,但随着软件工具和算法变得更加先进,更多的数据准备工作可以成本更低。这些对企业来说是好消息,因为他们可以降低做数据的成本,数据科学家也可以在单调乏味的工作上花更少的时间。
在我的职业早期的时候,我还需要花大量时间在建立数据字段和矩阵来运行一个简单的回归工作。但现在已经有很多广泛使用(甚至是免费)的工具,同样的任务可以在更短的时间内运行。目前数据科学家也越来越多,对我来说,这意味着数据科学家不能停滞在自己的角色,而要建立在对企业的了解上,贴近任务并了解它是如何运作的!
我的建议是你应该比分析做的更多,将自己定位为在分析方面有专业知识的领导人员,来参与企业的决策、投资和运营。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01