京公网安备 11010802034615号
经营许可证编号:京B2-20210330
ECharts,缩写来自Enterprise Charts,商业级数据图表,它最初是为了满足公司商业体系里各种业务系统(如凤巢、广告管家等等)的报表需求。以前这些系统的图表需求我们都是使用flash去实现的,百度分工很细,有专门的flash组同学去做这个事情,这就不可避免多了一个沟通环节,作为前端工程师无法独立掌控,不管是数据接口的设计,个性化的需求都得沟通商定。而且一个系统内会有很多个flash在不同场景下出现,他们并没有实现通用。加上乔帮主不让i系列上运行flash以及html5的火热,我们需要寻求一个解决方案。于是在2012年初,当时还是凤巢前端技术负责人的Kener-林峰在凤巢数据平台项目中尝试使用Canvas去做图表,他写了一个全新的轻量级Canvas类库ZRender,那可以说是ECharts的原型,虽然跟现在已经相去十万八千里了。
ECharts官网>>>
百度资深前端Erik回归后组建起了百度商业前端通用技术组,在前面提到的背景下加上前端团队的经理祖明的强力支持,数据可视化成为了通用技术里一个重要的研究方向, 林峰也就这样顺理成章的从凤巢技术负责人转到现在的角色,百度商业前端数据可视化团队负责人。痴狂于web3d的技术天才沈毅,沉迷图形图像的杨骥,有SVG/GUI实战经验的宿爽,对颜色如数家珍的陈怀木等等来自一线的工程师加入组建起了可视化团队。
正如前面提到的,ECharts来自ZRender,那时的ZRender是包含图表功能的,甚至拖拽重计算已经在那个时候被实现了,但各种图表数据逻辑与图形渲染耦合,非模块化,Demo时随心所欲的特殊定制,我们意识到这是一个糟糕的设计。ZRender做了第一次大规模的重构,抽离了一切图表相关功能,纯粹的作为底层Canvas类库使用。
而被抽离的图表逻辑构建成为ECharts 0.1版本, 但基本仍旧属于Demo状态,因为接口不规范,个性化能力和通用性都太差了。Erik和林峰,以及3位来自Flash组的资深工程师(百度商业系统中多年 来所做的各种flash图表基本出自他们或者是他们所带领的团队),花了近2个月时间先后开了6次会议终于制定并发布了百度图表库标准1.0版本。这份标准是在几乎没考虑实现成本的情况下制定的,追求设计的合理、高度个性化的扩展能力,可想而知,这是给团队挖了一个很深很深的坑,在紧接着的近10个月时间里ECharts团队就是看着文档一步一步从这个坑里爬出来。
幸运的是我们真爬出来了,2013年6月30,ECharts发布了1.0版本,这份标准完全成为了ECharts 1.0的API文档,而且我们还加入了更多的数据交互能力。虽然这份标准目前已经成为了ECharts文档的子集了,但它的重要性不容置疑,回过头看这段历程,我们衷心的感谢制定这份标准的5位工程师(林峰、赵庶、Erik、刘阳、杨冬),在我们看来接口设计的合理比起实现成本重要得多。
ECharts缘起公司自身的业务需求,但开源使得它得以发展,虽然业界已经有多如牛毛的JS图表库,但ECharts带着颠覆性的功能设计和技术 特征,发布后得到了业界高度关注和好评,迅速成为国内数据可视化领域的“后起之秀”,先后在CSDN、ITEye、InfoQ、中国统计网、统计之都等主 流技术媒体上有专题报道,被开源中国收录后即被列为精选做了长达一周的首页首位推荐,收藏数超过了1000,github上发布12个月后star数超过 了1900,已经成为了国内同类别项目中关注度最高的开源项目。被百度外100多家企业应用在新闻传媒、证券金融、电子商务、旅游酒店、天气地理、视频游戏、电力等众多领域。
令我们意外的是,ECharts仅发布半年入选成为了“2013年国产开源软件10大年度热门项目”,同时在“2013年度最新的20大热门开源软件” 中排名第一。除此之外,ECharts还得到了跨领域以及国外技术团体关注,如在R领域就同时出现国内外多个版本的扩展,听说还有两家亚太地区金融咨询企 业正在研发基于ECharts的BI类产品,甚至还有人拿着ECharts跑到纽约市长数据分析部门做应用推广。这都是我们的意外收获,感谢大家的支持。
下面是ECharts部分图表展示:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21