京公网安备 11010802034615号
经营许可证编号:京B2-20210330
ECharts,缩写来自Enterprise Charts,商业级数据图表,它最初是为了满足公司商业体系里各种业务系统(如凤巢、广告管家等等)的报表需求。以前这些系统的图表需求我们都是使用flash去实现的,百度分工很细,有专门的flash组同学去做这个事情,这就不可避免多了一个沟通环节,作为前端工程师无法独立掌控,不管是数据接口的设计,个性化的需求都得沟通商定。而且一个系统内会有很多个flash在不同场景下出现,他们并没有实现通用。加上乔帮主不让i系列上运行flash以及html5的火热,我们需要寻求一个解决方案。于是在2012年初,当时还是凤巢前端技术负责人的Kener-林峰在凤巢数据平台项目中尝试使用Canvas去做图表,他写了一个全新的轻量级Canvas类库ZRender,那可以说是ECharts的原型,虽然跟现在已经相去十万八千里了。
ECharts官网>>>
百度资深前端Erik回归后组建起了百度商业前端通用技术组,在前面提到的背景下加上前端团队的经理祖明的强力支持,数据可视化成为了通用技术里一个重要的研究方向, 林峰也就这样顺理成章的从凤巢技术负责人转到现在的角色,百度商业前端数据可视化团队负责人。痴狂于web3d的技术天才沈毅,沉迷图形图像的杨骥,有SVG/GUI实战经验的宿爽,对颜色如数家珍的陈怀木等等来自一线的工程师加入组建起了可视化团队。
正如前面提到的,ECharts来自ZRender,那时的ZRender是包含图表功能的,甚至拖拽重计算已经在那个时候被实现了,但各种图表数据逻辑与图形渲染耦合,非模块化,Demo时随心所欲的特殊定制,我们意识到这是一个糟糕的设计。ZRender做了第一次大规模的重构,抽离了一切图表相关功能,纯粹的作为底层Canvas类库使用。
而被抽离的图表逻辑构建成为ECharts 0.1版本, 但基本仍旧属于Demo状态,因为接口不规范,个性化能力和通用性都太差了。Erik和林峰,以及3位来自Flash组的资深工程师(百度商业系统中多年 来所做的各种flash图表基本出自他们或者是他们所带领的团队),花了近2个月时间先后开了6次会议终于制定并发布了百度图表库标准1.0版本。这份标准是在几乎没考虑实现成本的情况下制定的,追求设计的合理、高度个性化的扩展能力,可想而知,这是给团队挖了一个很深很深的坑,在紧接着的近10个月时间里ECharts团队就是看着文档一步一步从这个坑里爬出来。
幸运的是我们真爬出来了,2013年6月30,ECharts发布了1.0版本,这份标准完全成为了ECharts 1.0的API文档,而且我们还加入了更多的数据交互能力。虽然这份标准目前已经成为了ECharts文档的子集了,但它的重要性不容置疑,回过头看这段历程,我们衷心的感谢制定这份标准的5位工程师(林峰、赵庶、Erik、刘阳、杨冬),在我们看来接口设计的合理比起实现成本重要得多。
ECharts缘起公司自身的业务需求,但开源使得它得以发展,虽然业界已经有多如牛毛的JS图表库,但ECharts带着颠覆性的功能设计和技术 特征,发布后得到了业界高度关注和好评,迅速成为国内数据可视化领域的“后起之秀”,先后在CSDN、ITEye、InfoQ、中国统计网、统计之都等主 流技术媒体上有专题报道,被开源中国收录后即被列为精选做了长达一周的首页首位推荐,收藏数超过了1000,github上发布12个月后star数超过 了1900,已经成为了国内同类别项目中关注度最高的开源项目。被百度外100多家企业应用在新闻传媒、证券金融、电子商务、旅游酒店、天气地理、视频游戏、电力等众多领域。
令我们意外的是,ECharts仅发布半年入选成为了“2013年国产开源软件10大年度热门项目”,同时在“2013年度最新的20大热门开源软件” 中排名第一。除此之外,ECharts还得到了跨领域以及国外技术团体关注,如在R领域就同时出现国内外多个版本的扩展,听说还有两家亚太地区金融咨询企 业正在研发基于ECharts的BI类产品,甚至还有人拿着ECharts跑到纽约市长数据分析部门做应用推广。这都是我们的意外收获,感谢大家的支持。
下面是ECharts部分图表展示:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01