
自从微软在其博客中宣布IE10浏览器中将“禁止跟踪”(Do Not Track)作为默认开启状态设置后,网站分析界一直人心慌慌,这或许是2013年网站分析界面临的首要挑战,当然,除此之外,还有其他一些挑战,详情如下:
1、cookie机制对于确定唯一用户的挑战
挑战:基于cookie机制和移动互联网发展导致用户多终端、多浏览器的访问对确定真正唯一用户的挑战?
解决方案:在部分电商和登陆网站可以利用 customer id和cookie id的关联关系去定义唯一用户(虽然仍然存在偏差,账号公用导致 customer id大量对应不相关cookie id)。
2、offline数据如何更好和onine数据的结合
挑战:传统线下和互联网融合更加紧密,传统公司开始有大量online数据,而过去的online公司也会同样产生更多offline数据,如何更好标准化和对接数据成为挑战。
解决方案:至少需要小型BI系统,建议将前端WA数据输出到bi系统。
3、跨渠道的Attribution model
挑战:转化渠道的关系和贡献度如何确定
跨渠道分为多种
a、 多个click广告: 渠道之前的关系更加密切,用户在转化和形成品牌认知前经常跨越多个媒介 。
first click last cick or average 都是计算模型。
b、线上impression广告对渠道的贡献:传统的web analytics是基于click点击行为的数据,对于impression广告的贡献和参与的分配将是web analytics面临的另外一大挑战
c、offline marketing对于online marketing的转化促进作用的贡献程度如何确定?
如: 线下品牌广告对线上用户搜索和交易等行为起的引导促进作用如何量化,线下分地域投放和线上基于地域的效果监控、二维码、优惠券的使用、短地址的采用能部分解决线下往线上转移的监控。
d、营销的后续影响对于转化的贡献度如何定义?
张栋在微博曾经说的案例就是这样的情形:”【一个点击到底多少钱?之二】一个电商 SEM 每天花 1000 元, 每天总共 3500 个点击:SEM 带来 1500 个点击 + SEO 自然流量 带来 2000 个点击;这个电商停止 SEM 投放,每天 SEO 自然流量带来 100 个点击,问:一个 SEM 点击到底多少钱?”
解决方案:总体来说,需要完整的Attribution model机制和更加完善的监控机制,比如展现广告的监控,同时还需要case by case的分析(基于每次营销的)。
4、数据越来越多,如何收集有用的数据
挑战:不计算后端的数据,单纯一个网站的前端数据的维度也变得越来越多
哪些数据是最终支持通用kpi,在异常个案中如何收集证明案例的数据
解决方案:从业务和商业目标出发的去收集数据,在异常情况需要case by case.
5、网站分析师的技能要求
挑战:网站分析师在技巧技术娴熟的情况下,更多的是凭借敏锐的商业嗅觉去收集数据,分析数据,对商业的理解可以更好发挥网站分析的作用。
网站核心kpi有很多:转化率、 新会员注册、老会员回访、顾客数增多、品牌和口碑曝光度等等,网站分析师必须更加懂商业,例如在网站分析中常见的有长期商业目标和短期商业目标。分析师不清晰目标往往得出对商业无利的结论,在电商中毛利率和订单金额是长期追逐目标,但在短期阻击对手活动中这个明显就不是短期指标,比如京东要做图书的早期,一定是优先看用户数和市场规模,打击毛利率。
解决方案:对分析师的要求越来越高,懂统计分析、计算机、商业的分析师将是各个公司追逐的目标。
6、法律和政策
挑战: 基于网络立法对用户隐私的保护,cookie可能会被block,各个浏览器和操作系统对tracking的态度将导致第一方跟踪cookie的数据完整性。
解决方案:几乎无方案,国内的用户隐私政策相对宽松,需要行业自律。
7、如何利用网站数据做精准营销
挑战:从vistor到 customer的数据对接:如在常见电商购物车放弃率达到70%,从前端监控到用户登陆流程需要完整化,才可以采用精准营销唤醒购物车放弃用户。
解决方案:wa系统需要更多的自定义参数和api接口关联用户更多的非浏览行为。
8、wa工具的pm和网站分析师对网站分析的理解
挑战:工具和人谁先行?
设计wa工具的pm具有前瞻性带来的好处是更多的分析师群体可以更好使用工具,但工具的使用门槛大幅提高。
分析师更有前瞻性,瓶颈便在分析工具上,但不可能每个分析师都要求自主按自己想法去设计工具。
解决方案:wa工具设计者需要精通wa,提供可供选择的版本和功能供普通用户和分析师使用。
9 、传统wa的clickstream数据如何从页面走向位置
挑战:传统的wa局限在页面上下游关系,需要收集页面位置和区块点击的显性反馈数据作用到个性化推荐中,需要企业有强力的部署和实施能力,典型案例:amazon的url架构,页面不同位置和区域url均被埋点,针对用户和搜索引擎两套url。
解决方案:
判断uesr-agent,前端用一个js脚本控制,当用户出发区块的链接时,就会在url末尾自动加上标签。每次需要打标签时,前端只需要在区块DIV上做简单的配置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18