
自从微软在其博客中宣布IE10浏览器中将“禁止跟踪”(Do Not Track)作为默认开启状态设置后,网站分析界一直人心慌慌,这或许是2013年网站分析界面临的首要挑战,当然,除此之外,还有其他一些挑战,详情如下:
1、cookie机制对于确定唯一用户的挑战
挑战:基于cookie机制和移动互联网发展导致用户多终端、多浏览器的访问对确定真正唯一用户的挑战?
解决方案:在部分电商和登陆网站可以利用 customer id和cookie id的关联关系去定义唯一用户(虽然仍然存在偏差,账号公用导致 customer id大量对应不相关cookie id)。
2、offline数据如何更好和onine数据的结合
挑战:传统线下和互联网融合更加紧密,传统公司开始有大量online数据,而过去的online公司也会同样产生更多offline数据,如何更好标准化和对接数据成为挑战。
解决方案:至少需要小型BI系统,建议将前端WA数据输出到bi系统。
3、跨渠道的Attribution model
挑战:转化渠道的关系和贡献度如何确定
跨渠道分为多种
a、 多个click广告: 渠道之前的关系更加密切,用户在转化和形成品牌认知前经常跨越多个媒介 。
first click last cick or average 都是计算模型。
b、线上impression广告对渠道的贡献:传统的web analytics是基于click点击行为的数据,对于impression广告的贡献和参与的分配将是web analytics面临的另外一大挑战
c、offline marketing对于online marketing的转化促进作用的贡献程度如何确定?
如: 线下品牌广告对线上用户搜索和交易等行为起的引导促进作用如何量化,线下分地域投放和线上基于地域的效果监控、二维码、优惠券的使用、短地址的采用能部分解决线下往线上转移的监控。
d、营销的后续影响对于转化的贡献度如何定义?
张栋在微博曾经说的案例就是这样的情形:”【一个点击到底多少钱?之二】一个电商 SEM 每天花 1000 元, 每天总共 3500 个点击:SEM 带来 1500 个点击 + SEO 自然流量 带来 2000 个点击;这个电商停止 SEM 投放,每天 SEO 自然流量带来 100 个点击,问:一个 SEM 点击到底多少钱?”
解决方案:总体来说,需要完整的Attribution model机制和更加完善的监控机制,比如展现广告的监控,同时还需要case by case的分析(基于每次营销的)。
4、数据越来越多,如何收集有用的数据
挑战:不计算后端的数据,单纯一个网站的前端数据的维度也变得越来越多
哪些数据是最终支持通用kpi,在异常个案中如何收集证明案例的数据
解决方案:从业务和商业目标出发的去收集数据,在异常情况需要case by case.
5、网站分析师的技能要求
挑战:网站分析师在技巧技术娴熟的情况下,更多的是凭借敏锐的商业嗅觉去收集数据,分析数据,对商业的理解可以更好发挥网站分析的作用。
网站核心kpi有很多:转化率、 新会员注册、老会员回访、顾客数增多、品牌和口碑曝光度等等,网站分析师必须更加懂商业,例如在网站分析中常见的有长期商业目标和短期商业目标。分析师不清晰目标往往得出对商业无利的结论,在电商中毛利率和订单金额是长期追逐目标,但在短期阻击对手活动中这个明显就不是短期指标,比如京东要做图书的早期,一定是优先看用户数和市场规模,打击毛利率。
解决方案:对分析师的要求越来越高,懂统计分析、计算机、商业的分析师将是各个公司追逐的目标。
6、法律和政策
挑战: 基于网络立法对用户隐私的保护,cookie可能会被block,各个浏览器和操作系统对tracking的态度将导致第一方跟踪cookie的数据完整性。
解决方案:几乎无方案,国内的用户隐私政策相对宽松,需要行业自律。
7、如何利用网站数据做精准营销
挑战:从vistor到 customer的数据对接:如在常见电商购物车放弃率达到70%,从前端监控到用户登陆流程需要完整化,才可以采用精准营销唤醒购物车放弃用户。
解决方案:wa系统需要更多的自定义参数和api接口关联用户更多的非浏览行为。
8、wa工具的pm和网站分析师对网站分析的理解
挑战:工具和人谁先行?
设计wa工具的pm具有前瞻性带来的好处是更多的分析师群体可以更好使用工具,但工具的使用门槛大幅提高。
分析师更有前瞻性,瓶颈便在分析工具上,但不可能每个分析师都要求自主按自己想法去设计工具。
解决方案:wa工具设计者需要精通wa,提供可供选择的版本和功能供普通用户和分析师使用。
9 、传统wa的clickstream数据如何从页面走向位置
挑战:传统的wa局限在页面上下游关系,需要收集页面位置和区块点击的显性反馈数据作用到个性化推荐中,需要企业有强力的部署和实施能力,典型案例:amazon的url架构,页面不同位置和区域url均被埋点,针对用户和搜索引擎两套url。
解决方案:
判断uesr-agent,前端用一个js脚本控制,当用户出发区块的链接时,就会在url末尾自动加上标签。每次需要打标签时,前端只需要在区块DIV上做简单的配置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01