
在大数据火热的环境下,对数据爱好者来说,数据分析师职业是一个契机,那么怎么判断一个人是否可以做一名优秀的数据分析人才,
相信每位数据分析初学者、面试官心里都有这样一个问题,来看看资深数据分析师@joegh(网站数据分析webdataanalysis.net博主)和曹政是怎么回答的。
问题的提出:@小蚊子乐园 在微博上和大家讨论,部门招聘,现几个人原来是在不同的岗位上的,以前没有做过数据分析,怎么样才能看看出他们是不是适合做数据分析呢,在进行竞聘时使用什么样的题目会比较合适有效呢? 大家有何妙招没?
问题1:怎么判断一个人是否适合做数据分析?
@小蚊子乐园 在微博上和大家讨论,部门招聘,现几个人原来是在不同的岗位上的,以前没有做过数据分析,怎么样才能看看出他们是不是适合做数据分析呢,在进行竞聘时使用什么样的题目会比较合适有效呢? 大家有何妙招没?
@joegh:
我觉得无论什么工作兴趣最重要,要做数据分析师最基本的就是不讨厌数字,如果你跟他讲那个指标是通过怎么样的乘除加减得到的,他会觉得不耐烦,那么显然他不适合做数据分析;如果对数据较敏感,能够一眼发现异常值,数据分布情况,当然是最好的。
再则就是逻辑性,可以让他试试爱因斯坦的那道经典的逻辑题,看看能否解出来,需要多久;逻辑思维对数据分析尤其重要,不然会被各种指标的定义规则、与业务的联系纠结死,逻辑思维好的人写SQL等数据处理脚本也会更加高效。
接着是业务理解能力,最简单的就是让他定义下网站的目标是什么,哪些指标可以作为KPI,用户从进入网站到达成网站目标的整个过程是怎么实现转化的,能否画出业务流程图。(宏观层面,不要深入细节)
如果偏技术则需要懂一些数据库结构和SQL,如果偏展现需要考验下对图表的掌控能力,什么时候用什么图表合适,甚至如何配色。
最后就是细心、耐心和交流能力,做数据分析有时会很纠结,细心和耐心是必需的,好的交流能力可以让数据分析师更好地阐述清楚各类问题。
这些都是比较基础的东西,也是短期难以培养起来的技能。至于另外业务相关的一些知识,可以通过培训获取,问一个未接触过你的网站业务的人一些业务知识其实有些不公平,其实如果具备上面几点,一旦熟悉网站和业务之后,一定会成为优秀的数据分析师。
问题2:用什么题目测试更有效?
曹政:
1、问问他喜欢什么,平时对什么事情有兴趣,然后挖掘这些事情中他关注什么数据,比如买彩票?炒股?看nba?其实里面都有很多数据,他在他喜欢的 领域,如果能对数据如数家珍,对数据的解读能到位,(比如对某个nba 球星的数据和所对应的表现状态做评论)至少说明他有很强的数据感。数据感是做数据分析的第一要务。
2、问问他对数据分析的理解和目标,看看他是怎么认识这份工作的。
3、常见数据分析误区有非常多经典范例,给出几个测试题(容易产生误判的数据案例)让他分析解读一下。
4、典型场景分析,在某些业务场合中,最需要关注什么数据,如何解读其中的一些数据特征。
当然,3和4需要面试官或者说主考官有非常资深的场景把握和丰富健全的范例库,如果主考官自己都把握不住,那就没辙了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04