京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析新方法,你知道多少?
对数字营销公司FullFunnel的COO Stephen Barone来说,2016年将会是一个从孤立的、特定客户分析项目向更大众化的大收集与分析方法过渡的一年。
数据分析新方法,你知道多少?"
“我们现在还属于小数据的范畴,因为特定领域和行业的客户是孤立存在的,”他说,“在我们平时的业务中,几乎没有真正利用到。”
在2016年,Barone的立场可以代表许多和他们情况相似的企业。虽然许多企业在过去几年中推出并完善了基本的数据分析方法,他们之中依然有些人希望在新的一年里调研并使用更为先进的技术。
尽管目前还存在着种种限制,Barone依然确信,通过实现数据分析方法,FullFunnel可以做到更多。他最近聘请了一位有数学和经济学背景的销售分析师,通过该分析师的帮助,他希望对客户有一个更为全面的了解。目前FullFunnel的业务主要集中在入站营销和付费搜索活动。
他使用了DataHero的工具,为客户跟踪这些项目成功与否,本质上相当于回顾报告。但Barone希望回顾信息可以更加系统地识别和分析,以便为客户推荐更为有效的策略。这将是他们在2016年第一季度重点发展的方向。
“我们可以通过分析数据得到更广泛的结论,但我们并没有在这个上面投入更多的时间,”Barone说。
实时分析发展的一年
数字营销和公关公司M Booth and Associates的分析总监Jeff Bodzewski,也希望在2016年专注于更高级的数据分析技术。现在他想发展更多实时分析方面的业务。
M Booth根据客户特征使用数据分析方法来确定受众属性和定制消息。但在过去,他们的重心一直是确保正确的信息交付给正确的受众。2016年Bodzewski和他的团队要确保这些消息能够在最为恰当的时刻交付。
“现在,数据源大量涌入,特别是某个人的位置也能通过移动数据确定,我们也在营销方法中加入了“适时推送”,”Bodzewski说。
为了实现上述方法,Bodzewski计划在更大程度上利用移动数据。这些数据包括移动的位置,通过确定受众周围的环境实现消息的精确递送。
认知计算取得进展
毫无疑问,认知计算仍处于初级阶段,但作为一个被人们谈论最多的数据分析方法,2016年企业对它将会越来越感兴趣。Nationwide Insurance首席数据官Wes Hunter表示,他正在研究认知计算技术如何提高业务流程和客户体验。
对他而言,认知计算的潜在用途都是关于简化运营的。事实上,早期阶段认知计算的大部分希望都集中在使用机器来替代或扩充目前人力承担的任务,这些任务包括采集处理大量的数据,并在日常运营中将数据作为一个潜在的工具使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08