京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文 | 宿痕
来源 | 知乎
过去的运营体系弊端:
过去运营的方式存在几个比较严重的问题:1)运营模式比较单一,很难适应互联网快速变化的节奏,不能及时根据市场和用户的变化作出调整。比如双十一、828、双12、黑色星期五等;2)摸不清自己的用户,不清楚自己产品的老用户是谁、什么习惯,也没有针对的运营来拉动新用户,导致最后很难挽留住用户。比如我做移动电台,我的用户群体是谁,他们一般都是在什么场景使用,他们都是从什么渠道关注到我们的产品,他们使用的怎么样,他们有什么使用不习惯的地方;3)没有清晰的KPI指标,运营团队没有明确的KPI指标,拍脑袋决定业务发展需要达到的标的。比如我们今年希望做到多少用户量下载、多少使用量、多少活跃用户、多少场景应用。
认识数据化运营:
虽然目前企业界和学术界没有对“数据化运营”的定义有比较明确的达成共识,但这并不影响企业界的数据化运营战略的部署和实施。从基本要素和核心来看,“数据化运营”主要指的是“以企业级的海量数据存储和分析挖掘应用作为核心支撑的,企业全员参与的,以精准、细分和精细化为特点的企业运营制度和战略。”
数据化运营主要针对运营、销售、客服等部门的互联网运营的数据分析、挖掘和支持上。具体包括“产品流量的监控分析、目标用户行为研究、产品营销策划推广、用户画像分析、产品UE优化、竞争对手监控与分析、企业运营成本风险与管理等”。通过可量化、可细化、可预测等一系列精细化的方式来进行。
数据化运营的步骤:

BAT的数据化运营体系:
从BAT的数据化运营体系可以归结为六个层级,围绕数据平台建设的:数据规范、数据仓库、产品数据规范、产品ID、用户ID和统一SDK;围绕数据报表可视化的输出,包括数据地图、数据门户;对数据进行的精细化加工,关于用户的画像、行为、特征加工分析和挖掘;结合具体的应用场景的数据运营体系,在阿里妈妈做广告推荐,在微信做公众号、朋友圈推荐,在搜索关键词做SEM推荐;围绕数据和应用,所展开的各类数据产品;通过数据影响到战略分析和决策。
图(1) 数据化运营体系
一、数据平台建设
数据平台建设听起来是高大上的事情,但事实上是个事无巨细的工作。比如数据零散,各部门都掌握着自己的数据,而无法做到共享和管理;数据的不连贯,前员工走了,后面的人没有承接,数据做了一半就没有了,业务也相应的没有历史回顾和对比;数据口径的不一致,DAU、PCU、WAU、MAU、按天留存率(1-30日留存)、累计留存率(7日、14日、30日累计留存率),新增用户,有效新增用户,活跃转化率,付费转化率,收入指标,ARPU人均收入,渠道效果数据这些指标每个部门、每个人都有不同的定义和计算口径;数据没有完善的维护,杂乱的数据没有前后血缘关系的联系,没有对应的同学来承接维护


二、标准化的数据报表和可视化配置
建立完善的数据平台后,需要面临到数据开放的问题。对数据进行标准化后的产品的数据报表和可视化,对数据进行统一的管理,所展示的内容有数据的血缘、数据的owner、数据的每天产入产出、数据基本统计、数据的健康度等等。
如腾讯的数据门户:
阿里的在云端:
三、数据分析与挖掘
对数据的精细化加工,建立数据特征标签后更多的是对数据的分析和挖掘应用。
常用分析工具:EXCLE,SPSS,SAS,Enterprise Miner,Clementine,STATISTICA。个人用的比较多的是:EXCEL和SPSS。而BAT更多的是结合这些公司开发自己的数据分析平台和数据挖掘算法平台,但思路方法基本上类同。
数据分析思路包括:
1)事前分析:
如何预测各类指标
如何建立考核指标
支持的决策
精细化运营
2)事中分析:
实时监控效果
实时反馈和分析原因、调整
3)事后分析:
回顾分析效果、原因、优化
如何指导下一步的战略调整
常见的数据分析方法:
交叉分析、对比分析、预测分析、关联分析、聚类分析、对应分析、相关分析、因子分析等。
四、数据运营体系
主要的平台逻辑多数是进行用户细分,商品和服务细分,通过多种推荐算法的组合优化进行商品和服务的个性化推荐。另外还有针对不同产品生命周期,用户生命周期构建的产品数据运营体系。
腾讯用到一个很重要的方法,即用户生命周期管理办法。这也是社交网络事业群正在力推的一个很重要的方法论。
什么叫用户生命周期管理?传统营销学讲的是客户生命周期管理,因为腾讯社交群主要客户就是用户,所以腾讯叫用户生命周期管理。但是传统的对应的理论是客户生命周期管理,简称CLM。《王永庆传》提到一个一个米店老板怎么做生意,他每天会收集顾客用米的情况,包括家里有多少成员,然后能估计到他每天吃多少米,然后推算出这个家庭什么时候能把米吃完。比如买10公斤大米,估计是半个月,到快吃完时,他就会主动送货上门,或者主动打电话。他用这种办法赢得了客户。很快他的经营网络就超过了其他店。
而阿里通过成立数据委员会,通过不同部门的数据分析师和算法工程师建立不同业务的数据分析可视化报表、数据推荐平台。
五、数据产品
以BAT三家公司的数据产品为例进行分享。
腾讯:广点通、信鸽
阿里:数据魔方、淘宝情报、淘宝指数、在云端
百度:百度预测、百度统计、百度指数、百度司南、百度精算
六、战略
一定要强调的是数据≠战略!数据是客观的,是死的,是不会自己主动分析的。更人是感性的,是有经验的,有自己的判断的。只有结合数据来辅助我们,理性分析,才能做出更为可量化、可细化、精准化的KPI和战略目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22