
阐释基于大数据的异常行为分析
来自启明星辰泰合安管产品本部的叶蓬做了《基于大数据的异常行为分析》的专题报告。叶蓬表示,在当前网络攻防对抗的形势下,电力企业传统的安全防护体系和思路必须进行改变。我们必须认定我们的网络已经遭受入侵,必须从消极防护转变为主动防护、甚至是可适应性防护;要从单纯的防御转向积极对抗,要从独立防御向协同防御体系迈进,安全需要知己,还需要知彼。
当前大数据安全分析已经成为了安全领域的一大热门,随着大数据分析平台的搭建、安全要素数据的采集和安全数据库的构建,未来更多的注意力将转向安全数据分析本身。面对天量的安全数据,借助大数据安全分析技术到底能够分析出什么以前未分析出的洞见将成为大数据分析成败的关键。
针对上述问题,叶蓬指出利用统计模型和机器学习来对用户及实体进行画像、检测异常行为将成为大数据安全分析的一个重要发展方向。
异常行为分析是一种典型的非特征检测技术,能够弥补传统基于特征和规则的检测技术的不足,实现知所未知。
“Gartner将异常行为分析技术映射到用户及实体行为分析(User and Entity Behavior Analysis)市场,并表示该市场目前规模约为5000万美元。Gartner表示该市场目前发展迅猛,十分看好其前景,预测2017年将有2亿美元的市场规模。UEBA正逐步成为SIEM和安管平台技术的重要组成部分。
叶蓬在会上分享了两类异常行为分析的实践方法:基于异常行为模型的数据分析方法和基于正常行为模型的数据分析方法。
其中,数据分析师通过建立正常行为模型来进行异常数据分析的方法更受关注。在一个相对稳态的网络环境中,描述什么是正常的行为比描述什么是异常的行为更加容易。只要能够刻画出正常行为,就能够反过来判定异常。而建立正常行为模型的关键在于对用户和实体的行为进行“画像”,即建立行为轮廓。这个“画像”的过程与互联网业务下的用户画像有异曲同工之意。
接下来,叶蓬进一步阐释了可以进行“画像”的网络实体,以及如何选取实体的行为刻画指标,并介绍了基于实体画像的异常行为分析过程。同时分享了启明星辰融合了大数据分析技术的异常行为分析引擎的技术架构和应用场景。
最后,叶蓬指出异常行为分析不是安全分析的全部,行为分析仅仅是交互式安全分析的一个环节。在大数据安全分析下,行为分析更多是提供一些线索,接下来还需要安全分析师据此进行威胁狩猎(Threat Hunting)、数据勘探(Data Exploring)。行为分析要与规则分析紧密结合,行为分析要充分利用情境(Context)数据,包括情报、地理位置信息、漏洞、身份信息和业务属性等。
随着安全数据的大数据化,传统安全分析面临诸多挑战。伴随正在兴起的智能安全与情境感知理念,大数据分析已经被视作安全领域关键的解决方案。2014年底,启明星辰发布了国内面向企业级客户的大数据安全分析平台。系统融合先进的流式计算、交互式计算和批式计算技术,采用云计算和分布式文件系统及索引技术,对包括日志、网络流、数据包和威胁情报在内的结构化、半结构化安全要素信息进行采集、存储、分析和展示,使用智能关联、行为分析、情境分析、机器学习等多种数据分析及挖掘技术,构建了全新一代安全分析平台,为客户提供多种安全分析场景,有效满足数字时代安全管理人员对安全分析和管理的需求。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04