京公网安备 11010802034615号
经营许可证编号:京B2-20210330
阐释基于大数据的异常行为分析
来自启明星辰泰合安管产品本部的叶蓬做了《基于大数据的异常行为分析》的专题报告。叶蓬表示,在当前网络攻防对抗的形势下,电力企业传统的安全防护体系和思路必须进行改变。我们必须认定我们的网络已经遭受入侵,必须从消极防护转变为主动防护、甚至是可适应性防护;要从单纯的防御转向积极对抗,要从独立防御向协同防御体系迈进,安全需要知己,还需要知彼。
当前大数据安全分析已经成为了安全领域的一大热门,随着大数据分析平台的搭建、安全要素数据的采集和安全数据库的构建,未来更多的注意力将转向安全数据分析本身。面对天量的安全数据,借助大数据安全分析技术到底能够分析出什么以前未分析出的洞见将成为大数据分析成败的关键。
针对上述问题,叶蓬指出利用统计模型和机器学习来对用户及实体进行画像、检测异常行为将成为大数据安全分析的一个重要发展方向。
异常行为分析是一种典型的非特征检测技术,能够弥补传统基于特征和规则的检测技术的不足,实现知所未知。
“Gartner将异常行为分析技术映射到用户及实体行为分析(User and Entity Behavior Analysis)市场,并表示该市场目前规模约为5000万美元。Gartner表示该市场目前发展迅猛,十分看好其前景,预测2017年将有2亿美元的市场规模。UEBA正逐步成为SIEM和安管平台技术的重要组成部分。
叶蓬在会上分享了两类异常行为分析的实践方法:基于异常行为模型的数据分析方法和基于正常行为模型的数据分析方法。
其中,数据分析师通过建立正常行为模型来进行异常数据分析的方法更受关注。在一个相对稳态的网络环境中,描述什么是正常的行为比描述什么是异常的行为更加容易。只要能够刻画出正常行为,就能够反过来判定异常。而建立正常行为模型的关键在于对用户和实体的行为进行“画像”,即建立行为轮廓。这个“画像”的过程与互联网业务下的用户画像有异曲同工之意。
接下来,叶蓬进一步阐释了可以进行“画像”的网络实体,以及如何选取实体的行为刻画指标,并介绍了基于实体画像的异常行为分析过程。同时分享了启明星辰融合了大数据分析技术的异常行为分析引擎的技术架构和应用场景。
最后,叶蓬指出异常行为分析不是安全分析的全部,行为分析仅仅是交互式安全分析的一个环节。在大数据安全分析下,行为分析更多是提供一些线索,接下来还需要安全分析师据此进行威胁狩猎(Threat Hunting)、数据勘探(Data Exploring)。行为分析要与规则分析紧密结合,行为分析要充分利用情境(Context)数据,包括情报、地理位置信息、漏洞、身份信息和业务属性等。
随着安全数据的大数据化,传统安全分析面临诸多挑战。伴随正在兴起的智能安全与情境感知理念,大数据分析已经被视作安全领域关键的解决方案。2014年底,启明星辰发布了国内面向企业级客户的大数据安全分析平台。系统融合先进的流式计算、交互式计算和批式计算技术,采用云计算和分布式文件系统及索引技术,对包括日志、网络流、数据包和威胁情报在内的结构化、半结构化安全要素信息进行采集、存储、分析和展示,使用智能关联、行为分析、情境分析、机器学习等多种数据分析及挖掘技术,构建了全新一代安全分析平台,为客户提供多种安全分析场景,有效满足数字时代安全管理人员对安全分析和管理的需求。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01