
CDA考试教材 https://www.cdaglobal.com/article/475.html
CDA模拟题库 https://www.cdaglobal.com/article/473.html
76.下表是一个购物篮,假定支持度阈值为40%,其中__(A D)__是频繁闭项集。
TID 项
1 abc
2 abcd
3 bce
4 acde
5 de
A、abc
B、ad
C、cd
D、de
77.Apriori算法的计算复杂度受__(ABCD)__影响。
A、支持度阀值
B、项数(维度)
C、事务数
D、事务平均宽度
78. 我们可以用哪种方式来避免决策树过度拟合 (Overfitting)的问题? (AB)
A、利用修剪法来限制树的深度
B、利用盆栽法规定每个节点下的最小的记录数目
C、利用逐步回归法来删除部分数据
D、目前并无适合的方法来处理这问题
79.以下属于分类器评价或比较尺度的有: (ACD)
A、预测准确度
B、召回率
C、模型描述的简洁度
D、计算复杂度
80.在评价不平衡类问题分类的度量方法有如下几种:(ABCD)
A、F1度量
B、召回率(recall)
C、精度(precision)
D、真正率(ture positive rate,TPR)
81.贝叶斯信念网络(BBN)有如下哪些特点:(AB)
A、构造网络费时费力
B、对模型的过分问题非常鲁棒
C、贝叶斯网络不适合处理不完整的数据
D、网络结构确定后,添加变量相当麻烦
82.如下哪些不是最近邻分类器的特点: (C)
A、它使用具体的训练实例进行预测,不必维护源自数据的模型
B、分类一个测试样例开销很大
C、最近邻分类器基于全局信息进行预测
D、可以生产任意形状的决策边界
83.如下那些不是基于规则分类器的特点:(AC)
A、规则集的表达能力远不如决策树好
B、基于规则的分类器都对属性空间进行直线划分,并将类指派到每个划分
C、无法被用来产生更易于解释的描述性模型
D、非常适合处理类分布不平衡的数据集
84.以下属于聚类算法的是( ABD )。
A、K均值
B、DBSCAN
C、Apriori
D、Jarvis-Patrick(JP)
85.( CD )都属于簇有效性的监督度量。
A、轮廓系数
B、共性分类相关系数
C、熵
D、F度量
86. 下列对ID3算法的描述,何者为真?(A, B, D)
A、每个节点的分支度都不相同
B、使用Information Gain作为节点分割的依据
C、可以处理数值型态的字段
D、无法处理空值的字段
87.( ABCD )这些数据特性都是对聚类分析具有很强影响的。
A、高维性
B、规模
C、稀疏性
D、噪声和离群点
88.在聚类分析当中,( AD )等技术可以处理任意形状的簇。
A、MIN(单链)
B、MAX(全链)
C、组平均
D、Chameleon
89.( AB )都属于分裂的层次聚类算法。
A、二分K均值
B、MST
C、Chameleon
D、组平均
90.下列哪种算法可同时用来做分类以及预测数值?(A, B)
A、Neural Network
B、Decision Tree
C、Logistic Regression
D、Linear Regression
三、内容相关题
(一)、根据相同的背景材料回答若干道题目,每道题的答案个数不固定。下列各题A)、B)、C)、D)四个选项中,每题至少有一个选项是正确的,多选或少选,均不能得分。
I、下图为类神经元的示意图,请回答1至3题:
1、【答案(A)】
请问虚线的部分为?
A、类神经元
B、 键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
2、【答案(D)】
请问请问( )为?
A、类神经元
B、键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
3、【答案(B)】
请问W1, W2, …, Wm为?
A、类神经元
B、键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
II、根据下表的混乱矩阵(Confusion Matrix),回答4至5题:
4、【答案(A)】
对于属性值YES的响应率(Precision)应如何计算?
A. B. C. D.
5、【答案(B)】
对于属性值YES的捕捉率(Recall)应如何计算?
A. B. C. D.
(二)、6-10题略
四、案例操作题
带数据,数据请见***
(一)、根据相同的背景材料和数据回答若干道题目,每道题的答案个数不固定。在做题过程中需要使用统计软件进行相应的操作。提供SAS、SPSS和CSV三种格式的数据,统计软件不受限制。下列各题A)、B)、C)、D)四个选项中,每题至少有一个选项是正确的,多选或少选,均不能得分。
I、一家银行希望使用自有业务数据和外部征信局数据来构造信用评分模型。该数据保存在Credit这张表中。其变量描述如下:
分析过程需要使用软件进行,可以使用任何软件完成以下题目:
1、 (AB)
以下哪个变量是分类变量
A. TARGET
B. BanruptcyInd
C. InqFinanceCnt24
D. TLBadDerogCnt
2、 (B)
这些变量中,有多少个变量具有缺失值
A. 7
B. 11
C. 12
D. 27
3、(B)
InqCnt06的中位数是
A.0
B.2
C.40
D.3.11
4、(AC)
以下四个变量中,哪两个右偏严重
A. TLCnt24
B. TlOpenPct
C. TLSatCnt
D. TLSatPct
5、(B)
将数据按7:3的比例分为训练集和验证集,对有缺失值的变量使用中位数进行填补后,使用逐步回归法以Target为被解释变量构造逻辑回归,以下哪些变量的解释力度最强
A.TLBadCnt24
B.TLBalHCPct
C.TLCnt03
D.TLDel60Cnt24
6-10略
(二)、11-20题略
立刻扫码
看更多数据分析师认证试题
——学数据分析技能一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ + Ⅱ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
CDA Level II >了解更多<
▷ 报考条件:获得CDA Level Ⅰ认证证书;
▷ 考试时间:随报随考。
CDA Level III >了解更多<
▷ 报考条件:获得CDA Level Ⅱ认证证书;
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29