
大数据时代抽样的是是非非
现在到处都在谈大数据,相关的图书里面舍恩伯格的《大数据时代》写得最精彩也最具影响力,书中明确提出:在大数据分析和应用中,不应着眼于如何使用(随机)抽样技术,而应该使用大样本来作为总体数据来使用。
在这个背景下,大数据时代还是否需要抽样技术以及如何使用抽样技术引起了大家的广泛讨论,下面说说个人观点。
1. 在条件允许的情况下,收集数据阶段尽可能获得更多样本,使样本接近于总体的思路是对的。大数据时代的到来是由于数据收集、存储和计算这几方面条件的成熟导致数据运行成本的降低,将来数据是一种财富、一种资源,因此尽量收集数据资源是有意义的。而且抽样得到的数据往往只能回答实现设定好的问题,而大数据不但能回答设定好的问题,也能回答某些突然出现的问题,数据越多越好。
2. 在已经有大数据的前提下,使用大样本数据来代替总体还是使用抽样数据来推测总体特征取决于我们要解决的问题。如果以概括总体为目标,那么抽样往往是比较好的方式,但这个时候面临的理论问题和传统抽样问题是不同的:以前是如何从总体中随机抽样来推断总体特性,现在面临的问题是“大样本数据是否是总体的有偏抽样吗”?如果是的话,如何使用大样本数据二次生成随机样本来推断总体特性。如果大数据分析不像传统统计分析那样以洞察总体或群体特征为目标,而是以每个个体特征分析和应用为目的,这个时候直接使用大样本数据数据要好些,比如说通过个人搜索、购买等行为预测行业趋势,数据的覆盖面不可能达到百分百,这类应用中大数据本身就是样本,但是只要数量够大,即使不像传统抽样那么经过精心挑选,那么就基本上也解决了问题,但此时能明确大样本数据和总体数据的偏差往往也是有意义的。
3. 大数据主要表现在数据量大和数据维度多两个层面,尽管目前分布式(map-reduce等)和实时处理(流计算,内存计算)发展迅速,但是大数据在应用过程中如果能采用小抽样还是会节省一大笔成本,从效率和成本的角度考虑,适当和合理的抽样是有必要的,因此算法部署环节中抽样算法、增量计算、数据维数缩减等会是大数据应用中的重要课题,因为这些都会节省企业的计算资源。计算资源好比自来水管的水、餐桌上的饭,能省一点是一点。而且考虑到数据资源的价值可能会逐渐走高,抽样算法的低碳环保会在大数据时代大有可为。
4. 如果要问“在海量数据的背景下,原先以在总体随机抽样来判断总体为核心思想的统计学会不会面临危机甚至消亡。”,我的答案是不会,只不过现在问题进行了转化,统计学会主要研究“如何使用过采样的有偏样本来估计总体”,就像目前大规模社交网络抽样中研究的问题那样。社交网络的小数据量随机抽样往往也比较困难,但是使用随机行走等方式获取有偏的大数据却非常容易,因此“大样本=总体”的思想是错误的,理论上再大的局部抽样可能不如随机抽样有代表性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29