
2016年, 商业智能和数据分析领域的新趋势
1946年2月14日,地球上第一台电子计算机诞生。在这70年的岁月里,信息科技深刻地改变了人类社会。尤其是在新世纪里,互联网和大数据引领变革的潮流,人类历史掀开了最为绚烂的一页。在2016年,我们依然将看到商业世界会发生巨大的变化。新的数据分析工具将出现,给公司提供更多的业务情报、业务指导和市场操作策略。具体说来,我们在这一年将会看到什么呢?
数据分析人员将有更大的作用和影响力
一个很有趣的预测变化:数据科学家成为很多行业的“新星”。例如,哈佛商业评论认为数据专家是“21世纪最性感的工作”,因为他们具有越来越大的影响力。这些变化主要是因为需求驱动。调查发现公司对Python程序员的需求2014年竟增加了96%,而计算机系统分析员和信息调研人员的需求也毫无意外地增加。
Brian Dirking在Alteryx工作,该公司为客户提供数据可视化操作和数据处理服务。当谈到2016年的变化时,Dirking说“数据分析人员将会在决策中发挥更大的影响力,在会谈桌上获得更多的席位。”
Dirking介绍了一个调查结果事例,该调查结果改进了数据分析过程,并节省了数据分析时间。他指出:我们将会更加认同数据分析人员。还说道:“随着数据分析工具的改善,数据分析人员将会给企业做出更大的贡献。”
位置分析的重要性
2016年的另一个驱动力将会是地理位置分析和地理空间工具,它们能让企业更好地把握市场动态。比如,Dirking谈到的“商场布局”策略能够使企业利润飙升。
他说:“这是一些行业的紧要处。”他的公司使用交通时段分析来处理数据得出市场模型的案例,给很多大企业留下了深刻的印象。他还谈到特定实体店内细微的顾客行为。
他说:“人们是怎样逛商店的以及他们都看什么东西,变得非常重要。”并且谈到移动数据分析也可以应用在其他领域,如:运动和医学。
业务人员和IT人员的合作
人们在商业现代化发展的进程中,已经看到不同角色和部门之间的界限模糊了很多。比如:许多企业都要求IT人员跟业务人员或非技术人员的一体化合作,这样有利于工作过程的无缝衔接,而更多的人将享用数据分析的好处。
Dirking说:“人们一旦知道了一个问题的答案,他们就会发现另一个问题。” 他说,传统的工作方式是将IT人员和业务人员分成两个独立的阵营,这曾经是不错的。现在,通过建立两者之间的联系,公司可以提高工作效率和整体能力。由正确的人使用正确的数据,企业才能做出更好的决策。
预测性分析和数据发现的影响
通过收集不同类型的数据,公司可以建立更复杂的可视化模型,这将有助于他们采取准确的行动。例如:Dirking提到的“菜篮子分析”,把更好的数据模型展示给公司,让他们知道顾客在买什么,甚至他们将来最有可能买什么。
Dirking说:“它展示了很多新的东西,这些东西如果你只是拥有数据的话,是得不到的。”从CRM到销售,预测性分析和下一代商业智能将注定要改造购物车的内容。
Spark成为主流
另一个趋势与Alteryx看到的一样,即Spark将代替传统的Apache MapReduce Hadoop。
从前,存储装置通过电脑的物理集群读取和处理数据。那时,使用MapReduce管理这些分散的物理机很有意义。
随着网络可视化和其它技术的进步,推出了新的、内存大的、容易升级的系统。Dirking说:“Spark通过灵活处理数据的方法完善这些新的系统。”总的来说,我们预期看到一个新的趋势——新的数据分析工具更适合虚拟运行环境,如虚拟机或容器环境。
云将与你同在
Dirking提到,当你观察技术市场的时候,另一个预测就很明显了。就是近几年崛起的云计算,它的发展还没有停止。相反,我们看到云将供应商系统分成了不同的领域。关于是使用私有云还是公有云,或是混合方案的讨论已经开始。不管公司选择哪一种方案,它们都有一个共同点:采取常规的做法,为了充分利用云供应商提供的按需使用、可升级的系统,把成本高的硬件维护和相关工作外包出去。云应用的预测报告发现:大多数受访者称他们的公司已经扑向云计算的浪潮中。
IT巨头正在使用云服务代管各种强大的数据分析工具。像Salseforce公司以客户关系管理为中心,其它更多的公司的则搞综合分析服务。Dirking说:“Alteryx已经看到,很多客户使用诸如亚马逊的Redshift和微软的Azure以及可升级的、灵活处理数据的云服务。”
Dirking说:“这些进展,不仅让人们能快速升级系统,而且还能访问移动端数据。”
Alteryx与它的合作伙伴Tableau、Cloudera将举办一个网络研讨会简评这些预测,并向到会的人讲解数据——-一种新的有价值的资产,为何将会越来越有用。
具体应用案例
上面所谈的数据预测分析技术进展,正在用不同的方法影响不同的市场。
例如:一个最近的博文讨论到,运动团队如足球、橄榄球队是怎样利用数据分析确定队员的位置或是他们应该在哪比赛。因为新的数据驱动策略的应用,能够为他们带来新的球迷,并且让队员在运动中获得不同的体验。
数据分析在医疗保健方面的应用。假设一家大公司不得不使用一个半衰期很短同位素治疗癌症。每天,公司都要考虑生产多少个同位素,什么时间以及在哪儿使用。在交通时间分析法之前,有很多低效的路径选择方法。但是当你确切地知道运货需要多长时间时,你就能采取更恰当的行动,给公司和他们的客户节约资金、节省时间,让他们把更多的精力投入到未来的发展中。我们可以打赌说,这个时间预测分析也是可以挽救更多的生命的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28