
不懂别做PM丨数据分析硬技能解析
大家都知道,对于产品经理的岗位要求的能力还是比较多的,如果我们对这些能力,按照硬技能和软技能进行分类的话,就有且不止以下这些能力:
软技能:沟通能力、决策能力、逻辑分析能力、执行力、项目管理能力等;
硬技能(工具能力):文档能力、Visio、Axure、Mindmanger等;
那么,今天,我们要再讨论讨论产品经理的另一种非常重要的能力—数据分析能力。
何为数据分析?
现在的软件开发,都讲究小而美,单点突破,快速迭代。那么我们在快速迭代时,就要用到数据分析,通过用户使用数据来分析产品的优缺点,甚至方向的正确与否。因此,数据分析,就是产品迭代时的眼镜和耳朵,产品经理也是通过数据分析,来说服开发做功能,说服老板投入资源。
数据分析的概念:
数据分析是指用适当的统计方法对收集来的大量第一手的资料和第二手的资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。通过对数据的详细研究和概括总结以提取用户信息和形成结论。
数据分析使用场景列举:
1、如果某款游戏下载量高,注册率低;是否因为服务器登录问题或者注册流程繁琐,是否近期网络出现故障?
2、如果某款游戏数据一直良好,某段时间数据突然跌落;是否因为市场宣传力度减弱,是否因为用户生命周期上线,还是说其他精品的冲击?
我们必须了解的一点,是数据分析不在于数据本身,而在于分析的能力。数据只是参照物,只是标杆,分析才是行为,通过分析数据,我们发现问题的所在,再改进它。
需要分析哪些数据?
基础数据:下载量、激活量、新增用户量、活跃用户等;
社交产品:用户分布、用户留存(次日、3日、7日、次月、3月)等;
电商:淘宝指数、网站流量、跳出率、页面访问深度等;
内容类:内容转化率(内容下载量/内容浏览量)、留存量;
工具类:功能点击量、应用商城排名;
其他:竞品数据(下载、激活等);
数据分析的工具:
1、第三方数据分析工具,如友盟,可快速接入,节省成本,比较适合创业型公司及刚上线的产品,但是无法对关键数据在突发异样时进行跟踪;
2、自己开发的数据分析工具,可以对每个数据进行实时跟踪,并快速做出产品的调整,需要足够的开发人员及成本,比较适合大型公司或者成熟型产品;
如何进行数据分析?
对于这个问题,我想作为产品的工作人员,我们还不用达到数据分析师的高度,因此也不用说要先对数据建模,再对实际分析数据,看是否与模型吻合。但是,我们却需要要有一个产品数据分析的思路,这个思路可以这样展开:
1、我为什么分析?即就是明白,我分析的目的是什么,是寻找付费用户下降的原因?还是注册用户减少的原因?
2、我分析想要达到什么效果?是通过分析付费用户,找到问题,解决问题从而提升收入?
3、我该分析哪些数据才能达到这个效果?即需要什么数据才能达到分析的目的;
4、我又该如何采集这些数据?是直接通过第三方数据分析工具或者我们自己开发的工具就可获得?还是说要从数据库调取再交给程序猿哥哥?
5、我该如何整理这些数据?即我们常说的数据可视化,这样可以便于我们进行分析;
6、如何分析?即通过分析,找出问题的所在,给出你的结论;
7、怎么解决问题?给出你的解决方案;
最后给出一张图,说明各个数据的意义:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04