
什么是大数据?其实我们每天都在贡献大数据
什么叫大数据?这个问题似乎离我们的工作生活有点远,但事实上真的远吗?要回答这个问题,我们首先要搞明白什么叫大数据。不去找什么百度知道,不去查什么维基百科,我们用最简单通俗的言词来描述:所谓大数据,不过就是体量达到我们难以想象的那样大的一大堆数据。这些数据的贡献者不是别人,正是我们自己,它们被存放在我们看不见、摸不着的云端。即便如此,却在无时无刻影响着我们的工作和生活。
大数据对企业来说是巨大的金矿
当你清楚地知道全世界智能手机用户喜欢哪些App,当你知道全世界PC用户用Google、用百度怎么搜索、搜索什么的时候,当你掌握了用户在PC端与移动端的使用习惯有什么差别之后,你是否能意识到这些资源对于移动互联网的价值有多么巨大呢?
全球单中国市场,手机的普及程度就已经达到了人手至少一部的程度,可以想象智能手机的市场是多么庞大。拥有一部智能手机只是一个开始,人们使用智能手机的数据收集才是关键,每个人每天至少会启动哪几个App,在每一个App内是如何进行搜索的,每个人在安装了某个App之后是否会卸载掉之前的同类App,等等这一切不光是证明大数据的“大”,同时也是展现了大数据的变化之“快”。
看到这里,你可能已经若有所思,如果掌握这些大数据的人是你,你会如何利用这些资源?于是,一个新的问题来了,当面对大到难以想象的大数据时,你是否具备分析处理它们的能力。谁都不能一口吃个胖子,即便都能塞得进嘴里,能不能咽得下去还的看你有没有那个本事。
这些看似难以想象的高科技玩意,会不会只是大数据分析的结果呢?
如果一家公司如果掌握了大数据,并且同时具备分析处理大数据的能力,那么市场对于这个公司来说就是透明的。但如果是聪明的公司,在这个基础上还会做什么呢?如果用Facebook来做参照物,就会意识到社交所带来的数据交叉性的价值所在,这也是大数据的另一处魅力所在。
简单总结一下,大数据应该具备规模巨大、数据增速快、数据之间交叉性强三大特征。垂涎大数据的公司,需要具备分析处理、有逻辑性提炼的能力。需要指出的是,并不是所有企业都拥有大数据,能够挖掘大数据价值的公司才具备生存的核心竞争力。
大数据对于消费者来说是笑面虎
说了这么多“废话”,可能大家已经不耐烦了,这和我们平时用手机到底有关系吗?答案是肯定的,当然有关系,而且关系还不是一般的大,只是还没有一个契机让我们感受到大数据的存在而已。
我们用手机的行为习惯只是大数据中的一种,也是和我们最密切相关的一类大数据。无论从体量大小、信息量增速快慢、数据间的交叉性哪一个角度来说,我们都在无时无刻地为大数据做着贡献。而这些数据,大多被搜索引擎、以及各种“云”上传到我们看不到的空间保存起来,接着被进行各种分析。从某种程度上来说,用户对于互联网来说,就是不折不扣的“肉鸡”。
没有人愿意做“肉鸡”,但我们又确实是不折不扣的“肉鸡”
无论你是用Android手机、苹果iPhone、诺基亚Windows Phone手机,还是各种大大小小的非主流系统,接入互联网无非就是浏览器和App两种主要途径。要不是“棱镜”事件,我们可能永远也想象不到原来大家其实都在裸奔,毫无隐私可言。
具体到智能手机,纵使Android体验再不如iOS,背后有谷歌搜索、Google+等等撑腰也秒杀一切。微软Bing(必应)搜索做的再烂,微软也始终不离不弃,同样说明大数据对于未来十几年、二十几年的重要性。苹果以2亿美元收购社交媒体数据分析公司Topsy(主要是分析Twitter),重点不在于社交本身、而在于社交所产生数据的价值。从这个层面来说,iPhone也仅仅是体验优秀的终端,未来依旧掌握在“大数据玩家”的手里。
当了解过大数据之后,背后有没有一丝凉意呢?
智能移动终端市场的全球性增长,中国4G终于在2013年底上马,预示着从2014年开始,大数据与云存储必将成为资本家争抢的香饽饽。既然作为“肉鸡”的我们无法逃避,那么至少在消费、使用的时候,能够保持清醒的分析与自我保护能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23