
解析市场调研和数据分析的方法
你对用户的需求了解多少呢?你知道用户想要什么样的产品吗?你想知道用户将会如何看待你的产品吗?你想知道你设计的产品在用户中的口碑如何吗?……
是的。每一个产品经理都希望在产品开始立项设计前,得到用户最真实的需求,为自己的产品设计提供良好的支撑;每一个产品经理都希望自己设计的产品得到用户的认可和亲睐;每一个产品经理都希望用户能在使用产品的过程中不断反馈关于产品改进的意见和建议……那么,我们如何才能得到用户的前期意见和后期反馈呢?
这个时候我们需要的是数据的支撑,只有数据才能让一切更有说服力(前提是真实、有效的数据)、只有数据才能让我们更清楚地了解到我们想法的可行性……
既然这样,那数据从何而来?这自然少不了市场调研,只有通过对用户的调研才能收集用户最基础的用户数据、从最基础的数据上进行分析,从而了解用户的真实需求。那么,作为产品经理,我们应该如何对市场或用户进行调研呢?调研的方式和方法有哪些?对于调研的数据我们如何进行数据分析呢?数据分析的方法和方式有哪些呢?
一、 产品经理为什么要做市场调研?调研的目的是什么?
PS:我们在做市场调研前,必须有一个自己的调研思路:调研目的、调研对象、需要收集的数据、需要达到的效果等。只有有了明确的目标,才能获得更加有效的数据。
1、通过调研了解市场需求、确定目标用户、确定产品核心,为了更好的制订MRD;
2、为领导在会议上PK提供论据;
3、提高产品的销售决策质量、解决存在于产品销售中的问题或寻找机会进而系统、客观地识别、收集、分析和传播营销信息,及时掌握一手资源;
4、验证我们定的目标客户是不是我们想要的,目标用户想要什么样的产品或服务;
5、了解我们能不能满足目标用户的需求并且乐于满足目标用户的需求;
6、找准产品机会缺口,然后衡量各种因素,制定产品战略线路;
7、调研到最后,目标越明确,需求确明确,也就会觉得,产品越难做,难以打开市场等;
8、对于全新的产品,调研前PM必须先自己有一个思路,然后通过调研去验证自己的想法的可行性。
二、 市场调研的方式方法有哪些?怎样确定调研的维度?
1、问卷调查、用户AB测试、焦点访谈、田野调研、用户访谈、用户日志、入户观察、网上有奖调查;
2、做人物角色分析:设置用户场景、用户角色进行模拟分析;
3、情况推测分析;
4、调研的维度主要从战略层、范围层、结构层、框架层、视觉层来展开(不同的产品从不同的层次来确定调研的维度)
三、 如何整理市场调研的数据?
PS:对收集到的调研数据,我们需要整理出那些有效的数据,对于无效数据果断丢弃。对有效数据进行细致的处理、分析。
通过市场调研,我们收集了不少的数据,这些数据都是用户最直接的对产品的某种需求的体现。作为产品经理,我们视这些数据为宝贝,我们需要将这些数据进行整理,让他们变为珍宝。那我们该如何整理呢?
1、将规范的数据按照维度整理、录入,然后进行建模;不规范的数据的话就必须得自己先通过一些定性的处理,让它变得规范,然后再用工具进行分析;
2、封闭性的问题,设置选项归类即可。开放性的问题,建议还是先录下来,然后再头脑风暴整理出有用的东西;
3、定性的,焦点访谈和深访,都可以录音,在事后可以形成访谈记录;焦点访谈的过程中,可以以卡片的形式或者其他的形式让用户做选择题,可以获取少量的有数据性的东西,其他的更多的是观点、方向性的,这个需要在整理访谈记录的时候根据问题来归纳整理;
4、深度访谈的数据整理,我们以前会做头脑风暴,建立很多个用户模型,强行量化这些数据。这个方法比较有效,特别在做人群研究的时候。
四、 如何书写市场调研报告?
对整理后的数据,我们最终需要形成书面的市场调研文档报告,以最直观的方式呈现给我们的BOSS,从而获得老板对产品的支持。
1、对市场调研的数据分析后进行的说明总结,用图表或图形的形式最直观呈现;
2、分析用户当前现状,用户对产品的需求点;
3、报告的组成有研究背景、研究目的、研究方法、研究结论等相关内容;
4、根据调研的时候的思路,将报告逐一完善,将数据分析的结论图表化,得出自己的结论总结出趋势和规律
五、 数据分析的方式方法有哪些?
1、数据分析需要掌握数据统计软件和数据分析工具(分析工具如SPSS等);
2、数据分析的主要方法有:
(数据分析方法可以参考:《谁说菜鸟不会数据分析》一书)
PS:数据分析的方法有很多种,在进行数据分析的时候,选择有效的数据分析方法,能达到事半功倍的效果。
六、 数据分析报告如何指导产品经理进行产品设计?
1、根据调研结论 确定产品核心功能
2、把数据分析的结果加入到整个迭代设计的过程中加速产品的迭代更新
3、评估解决方案的可行性。根据实施的结果再去评估解决方案是否真的可行?是否还需要再改进,依此类推
4、通过数据进行分析,得出用户的行为规律,为产品提供支撑
5、日常的运营分析,及时发现产品问题
6、产品后期设定一系列的运营指标进行运营监控,然后反馈产品迭代(指标主要包括:1、用户的反馈、2、产品的BUG、3、市场的反映、4、产品未来的发展方向、5、点击率、留存率等等)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13