
数据挖掘和分析工程师
数据挖掘和分析工程师,第一眼看过去,应该大家都会觉得很陌生,不用担心,今天我就跟大家讲讲数据挖掘和分析工程师的具体工作岗位和要求分别是什么。
我们来看一下关于数据挖掘和分析工程师的例子
阿里巴巴资深专家详细解析分布式系统的事务处理经典问题及模型,美团网从事数据开发和挖掘工作的梁堰波分析如何让大数据在企业当中发挥价值,AWS启动大规模降价(其中部分产品降幅达到50%),还有IBM 斥资12亿美元在全球建造数据中心。云计算再掀创业热潮,19家企业入驻微软创投,爱奇艺运营副总裁详细谈了他们是如何挖掘5.5亿用户数据价值的。
数据挖掘和分析工程师的具体工作岗位和要求
百度在线网络技术有限公司
工作职责:
-研究数据挖掘或统计学习领域的前沿技术
-从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题
职位要求:
-热爱互联网,对搜索技术有浓厚的兴趣
-熟练掌握数据挖掘或统计学习的基础理论和方法,并有相关的实践经验 -具有良好的分析问题和解决问题的能力,对解决具有挑战性问题充满激情 -计算机/数学相关专业本科或以上学历
虹软(上海)科技有限公司
工作职责:
-研究数据挖掘或统计学习领域的前沿技术
-从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题
职位要求:
-热爱互联网,对搜索技术有浓厚的兴趣
-熟练掌握数据挖掘或统计学习的基础理论和方法,并有相关的实践经验 -具有良好的分析问题和解决问题的能力,对解决具有挑战性问题充满激情 -计算机/数学相关专业本科或以上学历
北京金和软件有限公司
岗位职责:负责对数据进行分析挖掘
岗位要求:1、具有海量数据挖掘、分析等相关项目实施二年以上的工作经验2、具有深厚的统计学、数学、数据挖掘知识,熟悉数据挖掘的相关技术。3、能根据数据的实际情况设计数据挖掘模型。 4、精通Sqlserver,Oracle,Mysql,DB2等常见数据库的操作。5、思维敏捷,良好的逻辑分析能力、良好的沟通能力
国内知名大型互联网公司 20万(淘宝猎头)
岗位职责
1、对淘宝网海量数据进行分析,从数据中挖掘潜在的问题和商业价值,规划、设计基于挖掘模型的解决方案;
2、挖掘用户在网站上的搜索、浏览、收藏、交易等行为特征,支持业务部门的数据化运营; 3、分析网站上各类违规和违法行为(包括欺诈、被盗、炒作、违禁品等),构建精准的监控模型。
4、根据业务需求和目标,将挖掘模型转化为实际应用。
岗位要求
1、 计算机、统计等相关专业硕士及以上学历;
2、对数据挖掘领域兴趣浓厚,能够不断的自我学习;
3、对统计学和数据挖掘算法原理有较为深刻的理解;
4、熟练使用SPSS Clementine/SAS EM等数据挖掘工具;
5、熟悉Oracle、Mysql等数据库,精通SQL;
6、具有良好的逻辑分析能力、沟通能力和文字表达能力
工作职责:
运用机器学习、文本分类与聚类技术来处理海量数据,分析与挖掘各种潜在关联,从系统应用的角度,利用数据挖掘、统计学习的理论和方法来解决实际问题,大幅提升搜索相关度、流量变现能力,改善用户体验。 主要工作内容包括:
-研究数据挖掘或统计学习领域的前沿技术
-大规模机器学习算法研究及并行化实现,为各种大规模机器学习应用提供稳定的服务 -通过对数据的敏锐洞察,深入挖掘商业产品潜在价值,进而为客户和网民提供更有价值的服务
-通过对技术的不断完善,推动产品的深化,使得技术成为公司成长的驱动,体现技术价值
职位要求:
-计算机/数学/经济相关专业,硕士及以上学历
-具有以下任一领域相关的理论背景:机器学习/数据挖掘/信息检索/自然语言处理/语言模型/文本分类与聚类/统计数学/机制设计/博弈论
-至少精通一门编程语言,熟悉网络编程、多线程、分布式编程技术,对数据结构和算法设计有较为深刻的理解
-有强烈的上进心和求知欲,善于学习和运用新知识
-良好的逻辑思维能力,能够从海量数据中发现有价值的规律,对数据敏感,能够发现关键数据、发现关键问题
-较强的沟通能力和逻辑表达能力,具备良好的团队合作精神和主动沟通意识
-具有良好的分析和解决问题的能力,较强的创新能力,对解决挑战性问题充满热情 具有以下条件者优先:
-熟悉文本分类、聚类、机器翻译,有海量数据处理、数据挖掘、机器学习项目经验 -熟悉分布式计算或高性能并行计算,并有相关项目经验
-了解机器学习的基本算法,如回归方法、决策树、SVM等;能从不同的角度思考、分析问题,敢于大胆地提出创新的解决方案
推荐与个性化部_数据挖掘与分析实习工程师
工作职责:
-负责日志统计挖掘和数据分析
-负责相关的日志挖掘的统计开发、维护
-针对实验数据,在统计学上或者产品应用上分析
职位要求:
-计算机相关专业,有一定编程基础;或数学专业,对于统计分析相关的理论有一定基础 -熟悉linux下开发环境和shell,熟悉一种脚本语言(python,awk,perl,php等)或c++编程经验
-优秀的分析问题和解决问题的能力,对解决具有挑战性问题充
满激情 -有mapreduce或日志挖掘开发经验者优先
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29