
实时股票分析系统的架构与算法
如果能在一台服务器上应用人工智能和机器学习算法处理每天的股票交易,而自己则在夏威夷的海滩上享受生活,那将是多么惬意呀。虽然股票价格的变化受多种因素的影响,世上也没有免费的午餐,但是有些公司依然能够借助于开源的机器学习算法和数据分析平台得到“更好、更健康、更便宜的午餐”。本文搜集并整理了一些如何实现实时股票分析系统的资料,从架构和算法两个层面给出了一种可行的方案。
虽然股票交易市场一直在持续地变化,经济力量、新产品、竞争、全球性的事件、法规、甚至是Tweet都有可能引起市场的变动,但是在这个市场上,使用不同的模型通过股票的历史价格来预测未来的价格依然是一种常见的实践。一个实时的股票分析系统不仅需要将影响股票价格的各种数据集合起来进行分析,还需要具有响应低延迟的特性,因而架构必须是高可伸缩、高扩展的,一方面随着时间的流逝,系统将存储越来越多的数据;另一方面数据处理应用程序必须能够通过添加更多的节点进行水平扩展以保持实时地响应速度。
来自于Pivotal公司的企业应用解决方案架构师William Markito最近在公司的博客上发表了题为《实时股票预测系统开源参考架构》的文章,介绍了一个通过开源技术实现实时股票分析系统的参考架构。虽然该架构关注于金融交易,但是也适用于其他行业的实时用例场景。William Markito首先从最顶层的视角,给出了一个高层架构图:
从最顶层的视角看,由预测模型驱动的最优化实时股票预测架构包含数据存储、模型训练、实时评估和采取行动四部分:首先,进入系统的实时交易数据必须被捕获并存储,作为历史数据。第二,系统必须能从数据的历史趋势中学习,识别出影响决定的模式和概率。第三,系统需要能够实时地将新传入的交易数据与从历史数据中学到的模式和概率进行比较。最后,系统还需要预测出输出并决定所要采取的行动。
之后,William Markito又使用Spring XD (现在称为Spring Cloud Data Flow,是一个统一并且可扩展的分布式系统,可用于数据抽取、实时分析、批量处理和数据导出场景)、Apache Geode (一个针对高可扩展应用程序的开源分布式内存数据库,目前正在孵化中)、Spark MLlib 、Apache HAWQ (一个Hadoop原生的大规模并行SQL分析引擎)以及Apache Hadoop™等开源组件对架构中的每一部分进行了细化:
如图所示,整个数据流包含6步,每一部分都是松耦合并且可以水平扩展的:
为了让读者能够在自己的笔记本上运行这一架构,William Markito还给出了一个更为简化的实现,该版本移除了长期的数据存储组件Apache HAWQ和Apache Hadoop™。
该解决方案中的每一个组件都责任明确,支持扩展并且能够在云环境中运行。那么除了架构之外,针对影响股票价格的不同因素,应该选择哪些算法来训练模型并预测股票价格趋势呢?
在SlideShare上LargitData的CEO David Chiu介绍了如何通过隐马尔科夫模型(HMM)来预测股票价格,David Chiu认为股票的历史行为与当前行为具有一定的相似性,明天的股票价格可能会遵循过去的某种模式:
另外,在Vatsal H. Shah 的网站上还有一个文档介绍了Decision Stump 算法、线性回归、支持向量机、Boosting 算法和基于文本分析的方法在股票预测领域的应用,并对这些算法的预测结果进行了比较。
除此之外,与上市公司相关的新闻动态也会对股票价格造成影响,例如并购定增事项、公司领导人的离开等等,对于这一问题,新加坡的数据科学家Lim Zhi Yuan在SlideShare上分享了一些自己的经验。Lim Zhi Yuan在该分享中研究了外部事件对于股票价格的影响,在分析时他分别通过线性模型和非线性模型两种方法进行了实验,线性模型采用了支持向量机(SVM)算法,非线性模型采用了深度神经网络模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15