
大数据在互联网的发展下发展迅速
当互联网随处可得时,互联网化就成为了最根本的商业思维。因此,互联网必须是一种内生的商业思维,以互联网的全连接和零距离的基本特征为起点,重构商业模式、营销模式、服务模式等外在形态,并以此驱动管理模式、研发模式、运作模式等内在形态的重构,从而重构整个企业的观念、组织和流程。
互联网思维的核心是用户思维。这与华为倡导的“以客户为中心”的理念似乎不谋而合。但在互联网时代,这种围绕客户需求做创新的思维要求更高——从需求收集、产品构思到产品设计、研发、测试、生产、营销和服务等,要的是全程参与、全程互动。拥有开放式创新的思维在互联网时代尤其重要,这个时代不相信“一个诸葛亮”,更相信“三个臭皮匠”。感觉跟不上节拍了吗?那就只能坐以待毙了。
我们把大数据和各个领域结合,看他未来的市场价值,发现能源这一领域,在整个大数据市场中,可以占到8.5%,为什么会占到这么大的比例?主要是因为能源行业的特点。采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。
数量庞大且内容多样,深层价值挖掘难。大数据时代企业信息资源包罗万象,一方面是与外部的客户、合作伙伴通过文本信息、社交网路、移动应用等形式进行互动时产生大量的数据;另一方面,企业内部生产研发、综合办公、视频监控等日常经营管理活动产生的大量信息。
互联网对于我们的经济和生活的颠覆性改变不言自明。但是以我个人比较保守的观点认为,互联网的作用无须被过于放大——它是一个工具,一个基础设施,它该改变什么,让它改变好了。再给你一个选择,空气、面包和互联网,你选择什么?答案就像寓言故事里一样简单:你愿意守住一座金山,还是一块农田?对于企业,敞开胸怀拥抱网络时代,但同时把握好自己的节奏和生存之本。
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
大数据时代,数据逐渐变现为独特的流通货币。企业大数据的真正核心应用价值不在于数据本身,而是利用数据在企业内部驱动管理模式的转变、营销模式的创新和IT系统架构的变革等,通过大数据的运用,促使企业经营业务的顺利开展,为引导企业战略决策提供重要的依据。如:快速消费品行业通过大数据分析产品潜在购买关联;汽车研发企业通过分析车辆运行情况等大数据来优化用户体验;金融行业利用大数据评估个人信用风险等等。企业对于海量数据的深度挖掘和运用,将掀起新一波生产率增长和消费者盈余浪潮。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04