
关联分析故事:从数据到信息到决策
俗话说,忘记历史就是背叛自己,今天这篇用此做开场再合适不过。
这一篇将根据一个虚拟的故事,来介绍如何通过历史数据来帮助一个销售人员发现规律信息从而辅助他来做一些决策信息。
本文的主角是Tim,Tim在一个销售部门,部门最近决定做新一轮销售计划,然后根据计划结束时,各个销售人员的销售业绩来进行KPI考核。
Tim的部门在确定了销售任务后,其它人很快的投入到店面的销售工作中去,而Tim则跑到了公司的IT维护部门,向IT 部门要了一份历史的客户数据。
此时已经有人在责怪Tim,说你一个销售不去外面跑业务,怎么跑到IT部门"不务正业"来了,而且,专门要以前的客户数据,居然不去不关心新客户。
其实,Tim还有一个搞IT的朋友,James,他是一位数据分析师,在零售行业也有一定的经验。Tim的第一个想法就是找 James给些建议。
平时两个人聊天的过程中,James给Tim讲了无数多次关于商业智能的知识。虽然Tim是搞销售的,但是受到James的经常灌输,自己对里面的知识也有了一些印象,比如,数据挖掘,当然这个概念对于搞销售的Tim来说简直就是天书,正所谓隔行如隔山,但是有一点他非常理解,那么就是:从数据到信息,也就是说,从数据中获取信息。
于是,销售任务一开始,Tim就跑到了IT部门要了这样一份数据,来看看James到底能从这里头得到什么样的信息,从而能帮助Tim更准确的知道因该给什么样的人推荐产品才比较靠谱。
James拿到Tim的数据之后,大概的浏览了一下:
数据的具体结构如下:
从这份数据中,James看到,里面包含了客户的性别,婚姻状况,年收入以及家庭相关的和教育等基本信息。其中最后一列关键信息,就是客户是否购买过产品。如果购买过就记为1,否则就记为0。
James拿过来这个Excel文件,首先做了一个关键影响因素分析。
根据这个工具,首先指定关注的列,就是客户是否购买了产品的标记:
这里选择BikeBuyer。
然后再点击Choose Columns to be used for analysis。
这里,James根据经验指定了需要分析的列。很明显,DataFirstPPurchase是没什么用的,James果断把这列剔除掉以免影响到分析的准确性。
然后系统会根据James的设置自动处理这些历史数据。
处理完毕后,系统生成了一份报告:
于是,James给Tim发了一封邮件:
Dear Tim,
我分析了你提供给我的数据,并且从数据里得到几点规则。
首先,关注没有车,有一个小孩,以及来自Pacific,还有平时上班路程不是太远的用户,他们很有可能是你的潜在客户。
此外,对于有两台车的客户,就不要去推荐了,从你们的业务记录来看这类客户购买产品的可能性实在不大。
还有小孩数量比较多,上班距离太远,超过65岁的成为你客户的可能性也很小。
以上。
Best wishes!
James.
某年某月某日
Tim收到这封邮件之后非常高兴,因为这样一下子就可以让他判断出一个新客户是否会购买产品,从而不会在本身就不会有购买需求这类客户身上花费太多时间,这样就能把精力投入到更多的目标客户中去。
不过很快,Tim又有了一个问题,就是单凭这样的判断太笼统,容易丢失部分极特殊的客户,所以Tim希望能自己根据客户的情况做更详细的判断。
收到Tim的这个请求之后,James在Excel中建立了一个挖掘计算器。
首先,点击预测计算工具。
在工具中设置需要预测的列。
点击Run,Excel通过SQL Server的分析服务开始处理数据。
数据处理完毕后,在Excel中生成了几张报告:
在第一份报告中,James得到了列表,里面标识了每个属性对一个未知客户会购买产品的影响程度。
在另外一份报告中,根据这份分析数据,包含一个动态的操作表格。
每一个属性的值都变成了一个下拉列表,各个属性的Impact影响值加在一起最后得出一个分数,这个分数如果达到一定的高度,那么就表明这个客户很有可能会购买产品。
于是,James把这个Excel文件发给了Tim,这样Tim就可以根据收集到的客户信息对应选择里面的项,然后通过计算知道用户是否是潜在客户。
这个文件帮了Tim不少的忙,也准确的识别了一些客户。但Tim也往往抱怨,在出去跑业务的过程中,电脑不是总带在身边,所以往往很难及时的做出判断。
James知道Tim的这个烦恼后,告诉他,你把第三份分析报告中的表格打印出来就可以了。
这个表格把每个属性的值都列了出来,并且它们对应的分数也在后面。Tim打印出来后,可以自己手动在上面做计算。
算好总分后,对比下面的分数,也就是说分数最起码要达到601才有可能是一个潜在客户。
于是,对于IT系统的操作不是很熟悉的Tim就可以每次对着这个单子来对新客户作出潜在客户的判断。
在这个故事里,James并没有用到什么太复杂的数据,通篇他只在用一个软件,就是Excel,Excel从2007版本开始通过SQL Server的功能扩充可以实现简单的数据挖掘功能,它通过SQL Server Analysis Services分析服务来生成临时的挖掘模型,通过样本数据以及挖掘模型和算法来发现数据中存在的一些规律,相关性等信息。
通过Excel对SQL Server数据挖掘功能的封装,使得用户即使不清楚数据挖掘的具体算法也可以实现数据挖掘的功能从而做挖掘预测分析来辅助决策,甚至都不需要用户了解什么样的挖掘模型算法适合解决什么样的问题,只需要关注Excel里所带的表分析工具就可以做简单的预测分析。
总之,数据挖掘,不是已不是数据分析师们的专属,有了Excel,你也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18