
几个月前,微软宣布了自己的用于大数据管理、分析和挖掘的Hadoop发布版HDInsight。记者联系到了SQL Server的高级产品营销经理Val Fontama,希望进一步了解微软的企业级大数据到底如何。
关于企业中数据集规模的增长趋势:
数据的海洋一直在增长。有预测表明业务信息存储量每年都会加倍。例如,Gartner发现全世界的信息量每年在以最少59%的速率增长,而其中大约85%的数据是“非结构化”的——比如视频剪辑、RFID标签和网站日志。这些非结构化数据用传统的数据管理系统来处理并不容易。此外,在很多场景下,客户在实时收集新数据时发现数据增长速率还在增加。
客户将需要一个与业务及所收集数据的发展相适应的现代数据平台。对全球企业而言,大数据为从所收集数据(不管是结构化的还是非结构化的)中找到新颖可行的观点创造了大量商机。因为到最后,大数据的最大前景就是推动来自数据的、更智能的决策。而智能决策就要收集来自各类数据的观点。
HDInsight是微软应对大数据的解决方案:
微软希望通过支持Windows Server和Windows Azure的Hadoop发布版,提供可移植、性能优越、安全且易部署等特性,促进Hadoop的应用。微软还将通过在HDInsight中集成Active Directory来增强Hadoop的安全性。此举将使IT部门能够将同样的一致性安全策略用于包括Hadoop集群在内的所有IT资产。
此外,通过与System Center集成,HDInsight简化了Hadoop的管理,并支持IT部门在同一面板上管理Hadoop集群、SQL Server数据库和应用程序。
基于Hadoop的Windows平台应用程序集成了如Excel、Power View和PowerPivot等微软的商业智能(BI)工具,可以很容易地分析大量的业务信息,从而创造独特的、差异化的商业价值。
为实现与Apache Hadoop百分之百的兼容性,微软的Hadoop发布版HDInsight是基于Hortonworks Data Platform(HDP)构建的。因此,客户能够将其MapReduce作业从自己的Windows服务器移到云中,甚至是移到运行在Linux上的Apache Hadoop发布版中。目前还没有其他厂商提供该功能。此外,在Windows Server和Azure平台上提供这些功能,也使客户能够利用熟悉的工具(如Excel、PowerPivot for Excel和Power View)轻松地从数据中抽取可行的观点。
SQL Server如何适应这种解决方案:
在帮助企业处理大数据集方面,SQL Server 2012与SQL Server 2008最重要的区别之一就是与Hadoop的兼容性。Hadoop允许用户处理大量的结构化和非结构化数据并快速从中获得观点,而且,因为Hadoop是开源的,成本较低。Hadoop与SQL Server 2012兼容的特性是微软与Hortonworks合作开发的,微软最近也宣布Microsoft HDInsight Server和Windows Azure HDInsight Service已经可以预览,这都使用户能够使用微软开发的Hadoop连接器来从数据中获得最好的观点。通过Hive ODBC Driver把SQL Server连接到Hadoop,客户现在可以使用如PowerPivot和Power View等微软的BI工具在SQL Server 2012中分析各种类型的数据,包括非结构化数据。此外,利用SQL Server 2012中新的Data Quality Services,客户可以通过将原始数据转换为适于建模的可靠且一致的数据来提高数据质量。
微软最近宣布了Office 2013 中的一些新特性,并介绍了开发者应该如何利用这些特性来构建构建应用和处理数据的服务。不足为奇,微软自己在Excel正是利用这一点来提供大数据服务的:
Excel是微软平台上支持大数据分析的主要客户端工具之一。在Excel 2013中,我们的主要工具是数据建模工具PowerPivot和数据可视化工具Power View,而且恰好它们都构建进来了,无需额外下载。这支持各个层次的用户使用熟悉的Excel界面进行自助式BI分析。
通过Excel的Hive插件,我们的HDInsight服务很容易集成Office 2013中的BI工具,使用户能够用熟悉的工具轻松地分析海量的结构化或非结构化数据。
除了Excel之外,微软还提供了其他的大数据交互工具:BI专业人员可以使用BI Developer Studio来设计OLAP cube或在SQL Server Analysis Services中设计可伸缩的PowerPivot模型。开发者可以继续使用Visual Studio来开发和测试用.NET编写的MapReduce程序。最后,IT运维人员可以使用他们目前所使用的System Center来管理HDInsight上的Hadoop集群。
总的说来,微软的策略看起来是要为客户使用大数据提供一种最简单的方法——扩展现有工具(如SQL Server和Office等),使之能够无缝处理新数据类型,从而允许各公司在处理新业务时能利用原有投资.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18