
零售O2O该如何做数据分析_数据分析师
通过数据分析可以知道商业模式是否可行,评判那种推广渠道效率最高,能发现网站、商品结构、物流等各个环节的问题,能评估改进效果。
有哪些数据?
线上平台的数据来源有网站统计工具、ERP系统、客服回访问卷投诉等。
线上数据主要包含:访问量(IP UV PV)、平均浏览时长(浏览量)、新UV比例、跳出率、转化率(注册、订单、支付)、流量来源(搜索、直接、连接、地区、推广)、网页打开时间、网站热点、搜索分析等。
ERP数据主要包含:订单量、客单价、毛利率、二次购买率、忠实顾客转化率、顾客流失率、动销率、缺货率、商品价格变化、SKU数量变化、周转率、退货率、品类销售占比、会员注册量、注册会员转化率等。
客服回访问卷投诉数据主要包含:投诉分类、UI印象、品类印象、价格印象、网站功能印象、物流体验印象、售后印象等。
以上数据相互关联,比如分析促销活动效果时,需要分析访问量的变化,注册下单转化率的变化,促销商品和正常商品销量的变化。
怎么分析数据?
有的公司成立专门的数据分析部门,数据部门不仅提供数据,还要完成数据分析工作。这种工作方式,虽然基础数据准确,但分析结果可能有较大偏差。因为数据分析人员不熟悉业务,对各种信息的了解也不如市场部和运营部等业务部门。
比如,某个品类销售占比突然降低,这可能是因为市场部推广方式的改变,也可能是遇到季节因素。如果数据分析人员不了解这些信息,则可能简单的判断成顾客不欢迎这类商品,并且做出建议商品部门降低这类商品占比的决定。
更合理的数据分析方式是,由数据专员提供基础数据,由相关部门骨干人员共同分析,比如转化率降低,应该由市场部、运营部、商品部共同分析,得出是由哪些方面的因素造成的。
对于新项目而言,可以引入目标分析法,目标分析法是以分析“新客引入成本”和“忠实顾客转化率”为核心,设定合理目标,以此判断商业模式是否可行。
比如:某个投资5000万的B2C网站,推广预算是2500万元,目标是稳定达到每天5000单。忠实顾客的定义是平均每月购物一次,每天5000单的销售目标,需要15万忠实顾客。
如果实际经营结果数据,新客引入成本是50元,忠实顾客转化率是30%,则要达到15万会员,需要2500万推广费用。
通过数据分析可知当新客引入成本大于50元,忠实顾客转化率低于30%时,项目不能达到目标。如果目标和实际业绩数据相差不多,可以通过优化内功改善业绩,如果数据相差太大,则说明商业模式可能不可行,应该早点调整商业模式,并在试错过程中重复以上数据分析步骤。
最重要的数据,我认为是流量引入成本,新客引入成本,忠实顾客转化率。流量引入成本数据主要考核市场部,新客引入成本数据由市场部、运营部、商品部共同负责,忠实顾客转化率主要由运营部和商品部负责。
推广方面的分析包含流量分析,停留时间,流量页面,转化率分析。流量的增减(新UV数据)代表市场部推广工作是否有效,新客停留时间浏览页面量和转化率等数据,一定程度上代表了市场部推广是否有针对性。
新客引入成本分析是推广效率重要的KPI,是每个达成目标投入的推广资金。比如某个推广方法带来了10000个UV,500个注册,100个订单。而这个方法耗费了1万元资金,则每个UV,注册,订单投入的资金分别是1元,20元,100元。这个推广方法的新客引入成本是100元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08