
零售O2O该如何做数据分析_数据分析师
通过数据分析可以知道商业模式是否可行,评判那种推广渠道效率最高,能发现网站、商品结构、物流等各个环节的问题,能评估改进效果。
有哪些数据?
线上平台的数据来源有网站统计工具、ERP系统、客服回访问卷投诉等。
线上数据主要包含:访问量(IP UV PV)、平均浏览时长(浏览量)、新UV比例、跳出率、转化率(注册、订单、支付)、流量来源(搜索、直接、连接、地区、推广)、网页打开时间、网站热点、搜索分析等。
ERP数据主要包含:订单量、客单价、毛利率、二次购买率、忠实顾客转化率、顾客流失率、动销率、缺货率、商品价格变化、SKU数量变化、周转率、退货率、品类销售占比、会员注册量、注册会员转化率等。
客服回访问卷投诉数据主要包含:投诉分类、UI印象、品类印象、价格印象、网站功能印象、物流体验印象、售后印象等。
以上数据相互关联,比如分析促销活动效果时,需要分析访问量的变化,注册下单转化率的变化,促销商品和正常商品销量的变化。
怎么分析数据?
有的公司成立专门的数据分析部门,数据部门不仅提供数据,还要完成数据分析工作。这种工作方式,虽然基础数据准确,但分析结果可能有较大偏差。因为数据分析人员不熟悉业务,对各种信息的了解也不如市场部和运营部等业务部门。
比如,某个品类销售占比突然降低,这可能是因为市场部推广方式的改变,也可能是遇到季节因素。如果数据分析人员不了解这些信息,则可能简单的判断成顾客不欢迎这类商品,并且做出建议商品部门降低这类商品占比的决定。
更合理的数据分析方式是,由数据专员提供基础数据,由相关部门骨干人员共同分析,比如转化率降低,应该由市场部、运营部、商品部共同分析,得出是由哪些方面的因素造成的。
对于新项目而言,可以引入目标分析法,目标分析法是以分析“新客引入成本”和“忠实顾客转化率”为核心,设定合理目标,以此判断商业模式是否可行。
比如:某个投资5000万的B2C网站,推广预算是2500万元,目标是稳定达到每天5000单。忠实顾客的定义是平均每月购物一次,每天5000单的销售目标,需要15万忠实顾客。
如果实际经营结果数据,新客引入成本是50元,忠实顾客转化率是30%,则要达到15万会员,需要2500万推广费用。
通过数据分析可知当新客引入成本大于50元,忠实顾客转化率低于30%时,项目不能达到目标。如果目标和实际业绩数据相差不多,可以通过优化内功改善业绩,如果数据相差太大,则说明商业模式可能不可行,应该早点调整商业模式,并在试错过程中重复以上数据分析步骤。
最重要的数据,我认为是流量引入成本,新客引入成本,忠实顾客转化率。流量引入成本数据主要考核市场部,新客引入成本数据由市场部、运营部、商品部共同负责,忠实顾客转化率主要由运营部和商品部负责。
推广方面的分析包含流量分析,停留时间,流量页面,转化率分析。流量的增减(新UV数据)代表市场部推广工作是否有效,新客停留时间浏览页面量和转化率等数据,一定程度上代表了市场部推广是否有针对性。
新客引入成本分析是推广效率重要的KPI,是每个达成目标投入的推广资金。比如某个推广方法带来了10000个UV,500个注册,100个订单。而这个方法耗费了1万元资金,则每个UV,注册,订单投入的资金分别是1元,20元,100元。这个推广方法的新客引入成本是100元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23