
零售O2O该如何做数据分析_数据分析师
通过数据分析可以知道商业模式是否可行,评判那种推广渠道效率最高,能发现网站、商品结构、物流等各个环节的问题,能评估改进效果。
有哪些数据?
线上平台的数据来源有网站统计工具、ERP系统、客服回访问卷投诉等。
线上数据主要包含:访问量(IP UV PV)、平均浏览时长(浏览量)、新UV比例、跳出率、转化率(注册、订单、支付)、流量来源(搜索、直接、连接、地区、推广)、网页打开时间、网站热点、搜索分析等。
ERP数据主要包含:订单量、客单价、毛利率、二次购买率、忠实顾客转化率、顾客流失率、动销率、缺货率、商品价格变化、SKU数量变化、周转率、退货率、品类销售占比、会员注册量、注册会员转化率等。
客服回访问卷投诉数据主要包含:投诉分类、UI印象、品类印象、价格印象、网站功能印象、物流体验印象、售后印象等。
以上数据相互关联,比如分析促销活动效果时,需要分析访问量的变化,注册下单转化率的变化,促销商品和正常商品销量的变化。
怎么分析数据?
有的公司成立专门的数据分析部门,数据部门不仅提供数据,还要完成数据分析工作。这种工作方式,虽然基础数据准确,但分析结果可能有较大偏差。因为数据分析人员不熟悉业务,对各种信息的了解也不如市场部和运营部等业务部门。
比如,某个品类销售占比突然降低,这可能是因为市场部推广方式的改变,也可能是遇到季节因素。如果数据分析人员不了解这些信息,则可能简单的判断成顾客不欢迎这类商品,并且做出建议商品部门降低这类商品占比的决定。
更合理的数据分析方式是,由数据专员提供基础数据,由相关部门骨干人员共同分析,比如转化率降低,应该由市场部、运营部、商品部共同分析,得出是由哪些方面的因素造成的。
对于新项目而言,可以引入目标分析法,目标分析法是以分析“新客引入成本”和“忠实顾客转化率”为核心,设定合理目标,以此判断商业模式是否可行。
比如:某个投资5000万的B2C网站,推广预算是2500万元,目标是稳定达到每天5000单。忠实顾客的定义是平均每月购物一次,每天5000单的销售目标,需要15万忠实顾客。
如果实际经营结果数据,新客引入成本是50元,忠实顾客转化率是30%,则要达到15万会员,需要2500万推广费用。
通过数据分析可知当新客引入成本大于50元,忠实顾客转化率低于30%时,项目不能达到目标。如果目标和实际业绩数据相差不多,可以通过优化内功改善业绩,如果数据相差太大,则说明商业模式可能不可行,应该早点调整商业模式,并在试错过程中重复以上数据分析步骤。
最重要的数据,我认为是流量引入成本,新客引入成本,忠实顾客转化率。流量引入成本数据主要考核市场部,新客引入成本数据由市场部、运营部、商品部共同负责,忠实顾客转化率主要由运营部和商品部负责。
推广方面的分析包含流量分析,停留时间,流量页面,转化率分析。流量的增减(新UV数据)代表市场部推广工作是否有效,新客停留时间浏览页面量和转化率等数据,一定程度上代表了市场部推广是否有针对性。
新客引入成本分析是推广效率重要的KPI,是每个达成目标投入的推广资金。比如某个推广方法带来了10000个UV,500个注册,100个订单。而这个方法耗费了1万元资金,则每个UV,注册,订单投入的资金分别是1元,20元,100元。这个推广方法的新客引入成本是100元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23