京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学领域的职位划分以及职责技能
随着数据科学领域的招聘信息越来越多,范围也越来越广。Datacamp根据最新的数据科学相关招聘信息,全面的了解各个行业之间数据科学领域每个职位角色之间的差异,以及所赋予的工作职责。
最主要分为以下几个职位:数据科学家、数据分析师、数据架构师、数据工程师、统计学家、数据库管理员、业务数据分析师、数据产品经理。下面通过信息图区分每个职位的角色介绍、必备语言技能。
数据科学家
角色/任务:
清洗,管理和组织(大)数据
必备语言:
R,SAS,Python,Matlab,SQL,HivePig,Spark
技能和特长:
预测模型
故事讲述和可视化
数学\统计,机器学习
数据分析师
角色/任务:
收集,处理和执行统计数据分析
必备语言:
R, Python, HTML,Javscript,C/C++,SQL
技能和特长:
电子表格工具(例如Excel)中
通信可视化
数学,统计,机器学习
数据架构师
角色/任务:
创建数据管理系统进行整合,集中,保护和维护数据源
必备语言:
SQL,XML,HIVE,PIG,SPARK
技能和特长:
数据仓库解决方案
深入了解数据库体系结构
提取thansformation和加载(ETL),电子表格和BI工具
系统开发
数据工程师
角色/任务:
开发,建设,测试和维护架构(如数据库,以及较大规模的处理系统)
必备语言:
SQL,Hive,Pig,R,Mtlab,SAS,SPSS,Python,Java,Ruby,C++,Perl
技能和特长:
数据API
数据仓库解决方案
统计学家
角色/任务:
收集,分析和解释,定性和定量的数据统计理论和方法
必备语言:
R,SAS,SPSS,Mtlab,Stata,Python,Perl,Hive,Pig,Spark,SQL
技能和特长:
统计理论方法
云工具
数据库管理员
角色/任务:
确保数据库是提供给所有相关用户,正在正确执行,并且安全运行
必备语言:
SQL,Java,Ruby on Rails,XML,C#,Python
技能和特长:
备份恢复
数据建模和设计
数据安全
ERP业务知识
业务数据分析师
角色/任务:
改进业务流程的业务和IT之间的中介
必备语言:
技能和特长:
基本工具(例如微软Office)
数据可视化工具(e.g.Tableau)
自觉听和讲故事
商业智能的理解
数据产品经理
角色/任务:
管理团队分析师和数据科学家
必备语言:
SQL,R,SAS,Python,Matlab,Java
技能和特长:
领导项目管理
人际沟通
国际平均水平薪资(US)
在今天,要找到一份符合自己梦想的数据科学工作,在没有统一的数据科学的定义和角色任务的情况下,一定要弄清楚是做什么产品什么项目,将要用到什么技术,什么语言,然后才能有针对性的去进行相关学习和培训。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16