
产品运营中的数据分析该怎么做
移动互联网产品发展过程是一个证伪的过程,根据设想的用户需求开发产品或服务,只有在市场中才能验证最初的假设是否成立,进而不断的优化和调整,而这一切要依赖于统计分析产生的量化数据。
统计分析的发展也随移动应用的发展走向个性化和精细化,个性化可以满足不同垂直领域的特定需求,更具适用性。而精细化则是加强了分析的深度和细度,能够更微观的看到问题。同时在社交网络大规模发展的今天,社会化的统计变得尤为重要。
移动应用统计分析到底能为开发者解决什么问题呢?首先是让开发者知道宏观数据,然后是细致的App功能分析,更重要的是精准定位用户和了解其需求。让开发者不仅要知道产品运营的基本状况和使用状况,更要了解到用户到底是谁,发现用户深入的需求,进而提供个性化的服务。
1. 移动 App 创业者怎么玩产品数据统计分析?移动开发者们常问:“统计分析平台,可以帮助我们实现什么?”这是很难一言以蔽之的问题,以使用友盟统计分析平台的经验,在此分享三个最重要的功能和益处:
1.1 快速打造数据运营的框架
其实每一个公司都应该有一个基于自己的数据运营的系统,来帮助相关部门随时查看产品或者业务的进展.由于部门和公司的角色不同,对数据的需求既有区别又有共通。比如一个做移动应用的公司,所有人都会关注新用户的增长,有多少用户是活跃用户等,这些都是跟产品的发展息息相关。借助统计分析平台,开发者可以快速建立一个清晰的基础数据展示。比如新增用户,活跃用户,设备,地域,联网方式等。
1.2 用数据推动产品迭代和市场推广
基础的数据运营框架对公司产品的整体发展状况会有一个很好的展现,但是我们应该关注更加细节的部分。比如谁在用我们的产品?他们是否喜欢?他们是如何使用的?市场推广带来的用户是否充分的使用了我们的产品?哪些渠道带来的用户质量更高…….我们都应该用数据来回答这些问题。产品设计人员可以有针对性的对产品使用情况进行统计分析,了解用户对不同功能的使用,行为特征和使用反馈。这样可以为产品的改进提供很好的方向。市场推广人员也不应该仅仅关注“什么渠道带来了多少用户”,更应该关注的是哪一个渠道带来的用户质量更高一些,ROI更理想。
1.3 产品盈利推手
产品盈利是创业者的最终目的。无论一款产品是否已经探讨出一个成熟的商业模式,我们都应该借助数据让产品的盈利有一个更好进程。在产品货币化的路上,数据可以帮助创业者完成两件事:一,发现产品盈利的关键路径;二,优化现有的盈利模式。
2. 数据分析为什么重要?它能为 App 开发者带来什么?移动应用统计分析平台能够为开发者提供数据帮助了解用户的使用行为,并根据用户行为优化产品,可以概括为如下几方面:
首先可以让开发者了解到应用的基本数据,如新增用户、活跃用户、启动次数、留存用户等,对用户的规模和质量有一个清晰的认识;
其次是一些详细的用户使用数据,如使用时长、使用频率、使用间隔、页面访问等,帮助开发者了解用户的使用习惯,深入认识用户群体;
再次可以通过自定义事件收集自定义信息,如推广信息点击情况、查看的商品类别、付款行为触发等,来收集开发者所关心的用户行为;
然后还可以获得用户的终端信息,如设备、运营商、联网方式等,对用户的终端有所了解,在适配及排查问题方面为开发者节约成本;
最后通过对各个渠道的数据分析,把控不同渠道的用户质量,为渠道推广提供参考依据。
3. 移动应用运营应重点关注哪些指标?有哪些分类?移动应用运营可以重点关注如下指标:
3.1 新增用户、活跃用户、启动次数
这些指标是KPI的主要评估标准;关注这些指标的每日趋势,您可以了解到应用每天发展是否正常、是否符合预期。
3.2 留存用户、留存率
留存用户和留存率是评定一个应用用户质量的重要标准,用户留存率越高,说明应用越吸引用户。开发者在查看留存率时,可以关注留存率在一段时间内的变化趋势,并可以通过对比不同应用版本、不同分发渠道的用户留存率来评估版本和渠道质量或定位应用某些指标值下降的原因。
3.3 自定义事件、漏斗模型、页面访问路径
自定义事件是开发者为了达到收集某些数据的目的而设定的,比如推广链接的点击、去购物车结算的行为等,通过统计这些自定义行为的数据,获得更有针对性的信息。
漏斗模型是多个自定义事件按照一定顺序依次触发的流程中的量化转化模型。我们可以通过漏斗对应用中的一些关键路径进行分析,如注册流程、购物流程等,把控应用中的关键行为信息。
页面访问路径展示了用户是按照什么顺序访问了哪些页面,各页面的使用状况如何及页面之间是如何跳转的,能够帮助开发者了解各页面之间的跳转是否合理,主要流程是否容易被用户触发等。
以美丽说为例,美丽说客户端用户的主要使用路径是:打开客户端→ 浏览最热最新→ 查看点击单品→点击去淘宝。利用友盟统计平台的漏斗模型发现,用户在点击查看单品,及点击去淘宝这两步转化率不理想。经过分析发现,美丽说 App 中点击去往淘宝的按钮上的文字是“去购买”,这样的文字让用户压力大,于是尝试将文字改成“查看详情”,暗示用户点击后有更多有利于购买决策的信息,且不一定要购买。修改上线后,点击去淘宝的通过率提升了50%,从10%上升到15%。
3.4 其他指标
在日常运营中,开发者关注以上指标就能获得大部分所需要的信息。但其实还有很多其他指标如使用时长、使用频率、终端属性、地域等,能帮助您获得更多用户使用行为的数据,为您升级版本时的终端适配提供依据、推广时针对不同用户群体的推送提供数据支持等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16