京公网安备 11010802034615号
经营许可证编号:京B2-20210330
产品运营中的数据分析该怎么做
移动互联网产品发展过程是一个证伪的过程,根据设想的用户需求开发产品或服务,只有在市场中才能验证最初的假设是否成立,进而不断的优化和调整,而这一切要依赖于统计分析产生的量化数据。
统计分析的发展也随移动应用的发展走向个性化和精细化,个性化可以满足不同垂直领域的特定需求,更具适用性。而精细化则是加强了分析的深度和细度,能够更微观的看到问题。同时在社交网络大规模发展的今天,社会化的统计变得尤为重要。
移动应用统计分析到底能为开发者解决什么问题呢?首先是让开发者知道宏观数据,然后是细致的App功能分析,更重要的是精准定位用户和了解其需求。让开发者不仅要知道产品运营的基本状况和使用状况,更要了解到用户到底是谁,发现用户深入的需求,进而提供个性化的服务。
1. 移动 App 创业者怎么玩产品数据统计分析?移动开发者们常问:“统计分析平台,可以帮助我们实现什么?”这是很难一言以蔽之的问题,以使用友盟统计分析平台的经验,在此分享三个最重要的功能和益处:
1.1 快速打造数据运营的框架
其实每一个公司都应该有一个基于自己的数据运营的系统,来帮助相关部门随时查看产品或者业务的进展.由于部门和公司的角色不同,对数据的需求既有区别又有共通。比如一个做移动应用的公司,所有人都会关注新用户的增长,有多少用户是活跃用户等,这些都是跟产品的发展息息相关。借助统计分析平台,开发者可以快速建立一个清晰的基础数据展示。比如新增用户,活跃用户,设备,地域,联网方式等。
1.2 用数据推动产品迭代和市场推广
基础的数据运营框架对公司产品的整体发展状况会有一个很好的展现,但是我们应该关注更加细节的部分。比如谁在用我们的产品?他们是否喜欢?他们是如何使用的?市场推广带来的用户是否充分的使用了我们的产品?哪些渠道带来的用户质量更高…….我们都应该用数据来回答这些问题。产品设计人员可以有针对性的对产品使用情况进行统计分析,了解用户对不同功能的使用,行为特征和使用反馈。这样可以为产品的改进提供很好的方向。市场推广人员也不应该仅仅关注“什么渠道带来了多少用户”,更应该关注的是哪一个渠道带来的用户质量更高一些,ROI更理想。
1.3 产品盈利推手
产品盈利是创业者的最终目的。无论一款产品是否已经探讨出一个成熟的商业模式,我们都应该借助数据让产品的盈利有一个更好进程。在产品货币化的路上,数据可以帮助创业者完成两件事:一,发现产品盈利的关键路径;二,优化现有的盈利模式。
2. 数据分析为什么重要?它能为 App 开发者带来什么?移动应用统计分析平台能够为开发者提供数据帮助了解用户的使用行为,并根据用户行为优化产品,可以概括为如下几方面:
首先可以让开发者了解到应用的基本数据,如新增用户、活跃用户、启动次数、留存用户等,对用户的规模和质量有一个清晰的认识;
其次是一些详细的用户使用数据,如使用时长、使用频率、使用间隔、页面访问等,帮助开发者了解用户的使用习惯,深入认识用户群体;
再次可以通过自定义事件收集自定义信息,如推广信息点击情况、查看的商品类别、付款行为触发等,来收集开发者所关心的用户行为;
然后还可以获得用户的终端信息,如设备、运营商、联网方式等,对用户的终端有所了解,在适配及排查问题方面为开发者节约成本;
最后通过对各个渠道的数据分析,把控不同渠道的用户质量,为渠道推广提供参考依据。
3. 移动应用运营应重点关注哪些指标?有哪些分类?移动应用运营可以重点关注如下指标:
3.1 新增用户、活跃用户、启动次数
这些指标是KPI的主要评估标准;关注这些指标的每日趋势,您可以了解到应用每天发展是否正常、是否符合预期。
3.2 留存用户、留存率
留存用户和留存率是评定一个应用用户质量的重要标准,用户留存率越高,说明应用越吸引用户。开发者在查看留存率时,可以关注留存率在一段时间内的变化趋势,并可以通过对比不同应用版本、不同分发渠道的用户留存率来评估版本和渠道质量或定位应用某些指标值下降的原因。
3.3 自定义事件、漏斗模型、页面访问路径
自定义事件是开发者为了达到收集某些数据的目的而设定的,比如推广链接的点击、去购物车结算的行为等,通过统计这些自定义行为的数据,获得更有针对性的信息。
漏斗模型是多个自定义事件按照一定顺序依次触发的流程中的量化转化模型。我们可以通过漏斗对应用中的一些关键路径进行分析,如注册流程、购物流程等,把控应用中的关键行为信息。
页面访问路径展示了用户是按照什么顺序访问了哪些页面,各页面的使用状况如何及页面之间是如何跳转的,能够帮助开发者了解各页面之间的跳转是否合理,主要流程是否容易被用户触发等。
以美丽说为例,美丽说客户端用户的主要使用路径是:打开客户端→ 浏览最热最新→ 查看点击单品→点击去淘宝。利用友盟统计平台的漏斗模型发现,用户在点击查看单品,及点击去淘宝这两步转化率不理想。经过分析发现,美丽说 App 中点击去往淘宝的按钮上的文字是“去购买”,这样的文字让用户压力大,于是尝试将文字改成“查看详情”,暗示用户点击后有更多有利于购买决策的信息,且不一定要购买。修改上线后,点击去淘宝的通过率提升了50%,从10%上升到15%。
3.4 其他指标
在日常运营中,开发者关注以上指标就能获得大部分所需要的信息。但其实还有很多其他指标如使用时长、使用频率、终端属性、地域等,能帮助您获得更多用户使用行为的数据,为您升级版本时的终端适配提供依据、推广时针对不同用户群体的推送提供数据支持等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18