
大数据对政府的大影响
随着互联网的发展以及多种来源的信息汇集至政府机构,政府部门需要继续设法管理大量的数据。政府部门可以从传感器、卫星、社交媒体、移动通讯、电子邮件、无线射频识别设备和企业应用程序持续不断地接收数据。因此,政府领导人面临的挑战是,捕集、摄取、分析、存储和分配数据,保障数据安全,并将其转化为有意义、有价值的信息。
美国联邦政府接收的数据量之大,令人难以置信,这使信息过载成为一项根本挑战。在数据量急速膨胀的过程中,新信息要么是未曾发现的信息,要么是未曾有过的信息。产生的问题是,如何有效地捕捉新的真知灼见。对大数据进行恰当地管理、建模、分享和转化,为从中提取新的深刻见解,并以过去根本不可能的方式做出决策,提供了机遇。简言之,政府领导面临的任务和工作挑战日益加剧,可利用的数据激增,并且过时落伍的信息管理能力完全限制了其应对能力,于是政府领导陷于进退两难之地。他们面临的问题包括:如何收集、管理和利用所有的新数据?如何保护和控制数据?如何提高组织间的信息共享,以获得更加综合且相互联系的情报?如何通过更好地了解数据的出处,并回溯至经过验证的可信数据源,从而提高数据的可信度?有哪些先进的可视化技术、工具和格式可用于表达信息,从而实现快速分析,并提出新的深刻见解?为抓住机遇,如何缩小人力资本的缺口?
大数据的特征
大数据是指大量、高速、复杂、变化不定的数据,需要用先进的方法和技术实现信息的收集、存储、分配、管理和分析。
体量大、类型多和速度快是大数据的显著特征。目前,15%的信息是结构化信息,便于存储在关系型数据库中。电子邮件、视频、呼叫中心对话和社交媒体等非结构化信息占85%,这对于运用常规的业务情报工具来提取有意义的信息造成了挑战。传感器、平板电脑和移动电话等产生信息的设备继续成倍增加。随着全世界的联系更加紧密,社交网络也在加速发展。这些共享信息的选择意味着公众、政府和企业间互动方式的根本转变。
从大数据的特征来看,数据源增加、传感器的分辨率提高,使得大数据的体量大。数据源增加、数据通讯的吞吐量提高、数据生成设备的计算能力提高,使得大数据的速度快。移动设备、社交媒体、视频、聊天、基因组学研究和各种传感器使得大数据的类型多以数据为基础的决策要可追溯,要有理有据,这使得大数据还应具备准确性的特征。
大数据的这些特征将决定政府在大数据业务和整个大数据生态系统中收集、分析、管理、存储及分配数据的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15