京公网安备 11010802034615号
经营许可证编号:京B2-20210330
过关类游戏在单机类游戏中出现会比较多,但多以休闲为主,比如《Candy Crush》、《Angry Birds》、《P V Z》、《小鳄鱼顽皮爱洗澡》、《Tiny Thief》等经典休闲游戏,鉴于很多圈内人士预测2014年是手游爆发年,且重点在ARPG类型,似乎会冒出很多横版过关或者全3D的过关动作类游戏,我们就针对此类型的游戏进行分析。
首先,此类型的游戏需要关注的是每关卡的独立玩家数量,即玩家ID数量,目的是为了监测玩家主要集中在哪个阶段。比如,游戏刚推出阶段,玩家主要集中在前面部分的关卡(如图一所示);推出一段时间之后,玩家主要集中在中部关卡阶段,如果期间有拉新活动推出,不排除前、中部分关卡处于一个玩家数量比较持平的表现(如图二所示);如果运营很久,玩家主要都会集中在关卡中后期,或者是一个缓慢上升的曲线,又或者是一个较持平的曲线(如图三所示)。以上假设的前提都是游戏在运营状况比较良好的情况下进行分析的。
图一
图二
图三
其次,我们需要关注的是关卡难度的节奏问题,如果设计的难度太低,玩家很快就会因为游戏毫无挑战性而流失;如果设计的难度太大,会带给玩家挫败感太强,也会容易因为灰心丧气而流失。所以,我们一定要把握好每个关卡内以及关卡与关卡之间的难度节奏。那么,这两个方面的难度节奏怎么从数据方面来统计和展现呢?
为了解决这个问题,首先要找到哪些关卡阻止了玩家继续前进。我们的解决方式是把每次玩家在某个关卡失败后退出游戏的行为进行记录,找出玩家在哪个关卡失败后不继续进行游戏而是选择退出游戏,并把这个指标定义为“关卡退出率”,计算公式为:
关卡退出率=此关卡失败后退出玩家游戏的次数÷游戏启动次数
除了这个指标,还要统计每关卡的失败率,目的是为了与上个指标对比查看此关卡是不是设计的难度太高,计算公式为:
关卡失败率=当前关卡未成功通过的次数÷此关卡的总启动次数
这两个指标进行对比后,我们就可以看出关卡的难度是不是设计的太高而不合理。如下图所示:
过关类游戏的难度曲线(也就是关卡失败率)理论上应该是波浪曲线逐渐上升的形状,但游戏刚开始运营的时候肯定会有偏差,需要根据上图的实际表现情况来不断进行调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05