大数据市场三大趋势渐显 应用推动各行业发展
随着移动互联网、物联网等的迅速发展,新数据源不断出现,而中国数据总量的不断增长,使大数据成为一种重要资源,有利于推动零售、旅游、医疗、金融、电信、政府公共服务各个领域的业务创新。
大数据转变企业商业模式
来自于线下大数据市场(IT企业的大数据应用及大数据平台业务市场)中IT巨头和单一大数据业务的厂商开始行动,优化产品和服务路线图;线上大数据市场(互联网用户数据市场,以及以互联网金融为主的线上金融市场)的成熟度逐渐提高,以金融和零售为核心的线上大数据应用走向成熟,市场体量进一步扩大。企业着力培育数据资产,积极探讨数据变现,行业大数据多集聚、少融合。
大数据产业链整体布局完整,但局部环节竞争程度差异化明显。数据采集环节,综合型大数据源市场处于结构化整合阶段,垂直型大数据源市场处于布局阶段;数据存储和数据挖掘环节市场结构稳定,国际巨头垄断,寡头格局已经形成,国内企业短期内很难超越;数据应用环节是国内企业的机会,但技术仍不成熟。
各环节产业链正在影响企业商业模式的转变。模式一:利用存储能力进行运营,满足企业和个人面临海量信息存储的需求;模式二:对数据进行挖掘分析后预测相关主体的行为,以开展业务;模式三:直接进行信息租售或提供信息租售平台;模式四:IT服务提供商提供大数据空间出租模式,通过出租一个虚拟空间,从简单的文件存储,逐步扩展到数据聚合平台;模式五:针对企业需求,为运营某一环节或某一业务问题提供解决方案,实施单点技术,例如向零售商提供大数据分析技术,获得营销点子;模式六:针对企业系统需求,提供整体解决方案;模式七:BDaaS(Bigdataasaservice),数据应用即服务的模式,通过云服务提供在线大数据技术或者解决方案。
根据易观智库2014年中国大数据市场行业投资结构数据显示,金融、通信、零售为前三大行业,投资占比分别为16.0%、15.6%和13.9%。政府、医疗、旅游投资比例分别为12.7%、9.0%和4.1%。六大行业累计占比71.3%。其他行业包括教育、制造、能源、媒体、互联网等,累计占比28.7%。大数据产业集群逐渐形成,即针对企业而言,以云端大数据集聚为前提条件,以行业云服务为平台,共享企业间核心竞争力。
大数据市场三大趋势渐显
大数据市场未来将呈现以下发展趋势:
其一,数据生态系统复合化程度加强。大数据的世界不只是一个单一的、巨大的计算机网络,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。
其二,数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。
其三,产业核心要素的掌控者主导数据生态体系。数据生态体系中的核心环节是产业的核心要素,例如电商的支付、物流、信息(信用)。掌握产业核心要素环节的企业若顺势而为,把握大数据时代的机遇,将企业自身的核心竞争力优势进一步释放,运用互联网思维,通过产业核心要素的大数据掌控数据生态的主要生态链,从而最终实现在数字经济时代的再一次腾飞。
大数据应用推动各行业发展
进一步通过数据驱动经营和营销,各零售企业会以会员为核心进行管理优化,通过以人为中心的数据驱动,实现决策优化及精准营销。行业会探索越来越多的大数据营销新模式,各类零售企业会积极尝试新机会,如微店等,寻找消费者偏好的新潮流。不断丰富外部数据源,在企业自身线下数据采集能力不断提高的同时,与更丰富的外部数据源合作将快速提升营销的精准度,包括权威市场研究机构、领先互联网巨头等。
旅游大数据的应用,是尽快建立数据统一化标准,建立统一数据交换标准,区域旅游数据一体化,全国旅游数据一体化。实现大数据的三屏统一(旅游监管大屏、景区公告大屏、游客手机屏)。
通过利用医疗服务的EHRs数据、医院与医保的结算与费用数据、医学研究的学术、社会、政府数据、医疗厂商的医药、医械、临床实验数据、居民的行为与健康管理数据、政府的人口与公共卫生数据、公共社会经济生活中网络产生的数据等方面,为医疗行业的药品研发、疾病治疗、公共卫生管理、居民健康管理、健康危险因素分析提供精准数据支撑。
在传统金融运作模式下,金融机构评估消费者的信用状况、消费能力、消费意愿的能力不强,导致部分金融领域产品服务定价过高,部分领域成为剩余市场,这与实际的金融要求还存在一定差距。大数据将有助于推动金融和银行产业中的数据聚合,基于产业整体数据挖掘价值,推动产业的发展,推动业务模式的创新。金融业大数据目前应用的主要价值在于金融风险管理、消费智能、智能运营等。
电信企业从传统数据时代走向大数据时代。由于电信企业生产运营所需,自身生产管理系统已经具备海量以客户为中心组织的统一的视图数据资源。大数据可为电信业提升网络服务质量,增强管道智能化;更加精准的洞察客户需求,增强市场竞争力;升级行业信息化解决方案,提升客户价值;提供数据安全服务,在大数据市场建立差异化竞争优势。
大数据不仅是一种海量的数据状态及其相应的数据处理技术,更是一种思维方式,一项重要的基础设施,一个影响整个国家和社会运行的基础性社会制度。它是治理交通拥堵、雾霾、看病难、食品安全等“城市病”的利器,更将为政府打开了解社情民意的政策窗口,打造平台的政府、服务导向的政府、开放的政府,即智慧政府。其应用价值是:加强统筹规划,优化大数据形成机制;加强数据收集和信息感知,提高智慧城市感知水平;推进大数据应用,提高经济社会智慧化水平。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28在当今快速发展的数据驱动世界中,数据专员的角色变得愈发重要。无论是在企业决策、市场分析还是产品开发中,数据专员都扮演着不 ...
2024-10-27