京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据会改变人们的思维
一讲到大数据,通常都会提到4个V:量大(Volume),积累速度高(Velocity),数据的产生多源化(Variety),数据笼统噪音大(Voracity)。然而,这些只是对大数据在互联网时代超高速增长现象的描述。大数据真正的意义和价值是它改变了我们的思维方式。这就是大数据思维。
大数据思维能使我们在决策过程中超越原有思维框架的局限。每个人都是依据自己对现实的认识和判断而不是现实本身作出行动决策的。以数据为基础的智能决策有两个步骤。第一是对事物的理解和判断,第二是作出行动决策(不行动也是一种决策)。行动决策会受到决策者价值取向的影响。比如,二次大战末美国打到日本沿岸并调集了比攻打德国时诺曼地登陆更多的军舰云集太平洋准备对日本本土发起攻击。根据对攻占几个日本岛屿所造成伤亡数据的分析,美军预测攻占日本本土将要付出50万美军伤亡的代价。在这个判断的基础上,美国总统杜鲁门做出了向日本投原子弹的决定。结果是减少了美军的伤亡但造成了几十万日本平民的死亡和持续至今的辐射危害,其价值取向是很清楚的。
人们对事物的理解和判断会受制于自身思维框架的局限。一个物理学家在分析一件事物时,会很自然地应用物理定律来思考、理解和判断。所用的概念和语言也会有物理特征(时间、速度、场、重量、质量、作用力、反作用力等等)。一个社会科学家在分析一件事物时,脑子里出现的框架是人际关系、社会地位、历史背景、社会效益等等。所用的概念和语言带有社会人文特征。搞理论工作的和搞实际工作的思维框架也很不同,前者重视逻辑性、系统性,而后者更重视时间性和可行性。即使是同行业的人也会因年龄、经历、环境、学历不同而产生不同的思维框架。当同一现象和信息进入不同人的脑子里时,它会被不同的思维网路过滤、不同的思维方式处理,最后的结果是对同一现实产生不同解读。没有一个思维框架,我们无法理解和判断一件事物。但思维框架本身又对我们的认知产生了一个很难逾越的局限。
大数据思维不是从某个人的思维框架出发,而是让海量数据碰撞,寻找相关性,先看到结果再分析原因。这就冲破了原有思维框架的局限。比如,美国一家零售商在对海量的销售数据处理中发现每到星期五下午,啤酒和婴儿尿布的销量同时上升。通过观察发现星期五下班后很多青年男子要买啤酒度周末而这时妻子又常打电话提醒丈夫在回家路上为孩子买尿布。发现这个相关性后,这家零售商就把啤酒和尿布摆在一起,方便年轻的爸爸购物,大大提高了销售额。
大数据思维可以引发城市管理的新方法。自从美国大使馆每天公布PM2.5指数以后,城市空气污染的问题得到了中国各个城市政府和市民的重视。每天PM2.5检测数据的采集成为环境保护和管理的一个重要任务。如果一个统计学家按照原有思维框架来设计检测数据采集,他会从统计学原理出发在市区有代表性的不同地点定时采集和上报数据。其结果是数据量有限,费用高,检测覆盖率和准确率低。应用大数据思维,某市环保部门考虑将上万个手持检测仪发放给散居各处的市民检测并通过手机上传数据。通过手机定位,环保部门可以确定每个数据的测量地点和时间,大大提高数据采集的覆盖面和精确度。
大数据思维可以对历史数据的分析提供新思路。中国人讲究作学问要“读万卷书,行万里路”。用大数据思维,读万卷书在今天并非难事。美国的国会图书馆正在将藏书全部数码化。以后通过电脑“看书”搜索关键词,分析相关字条和数据将会非常容易,读万卷书可能只是几小时的“小任务”。美国匹兹堡大学公共卫生学院将记录在报纸、报告、微缩胶片上美国各地自1888年以来有关传染病发生和死亡的多元、碎片、海量的数据收集、整理并数码化。通过数据建模和分析,把一百多年的历史“死”数据变活,建立了1888至2010年美国50多种传染病电子数据档案库。用历史数据证明了免疫苗的发明和使用避免了一亿以上的美国人死于传染病。(见下图)
大数据思维能帮助开创新的商业模式。在美国出现的Uber打车服务和后来中国兴起的滴滴出行(原滴滴打车)是大数据思维产生的经典020(网上网下完美结合)新型商业模式。智能手机在移动互联网时代的普及使实时定位的数据传递和信息沟通成为可能。它为乘客和司机之间的商业交换提供了一个崭新的平台,改变了传统的电话叫车或路边招车,降低了沟通成本和空驶率,极大地节省了司机乘客双方的资源和时间。源源不断的乘车交易和时间地点的电子数据在高速地积累和储存。数据科学家们可以通过对海量数据的分析寻找规律以提高和改进乘客打车出行的体验,找到新的商机和推出新的服务。
大数据思维的核心是要意识到我们已经生活在一个互联网几乎无处不在的世界。互联网将各种信息仪器(手机、电脑、传感器、相机、摄像头、等等)联为一体(物联网),数码化的数据和信息在这个庞大的网上时时刻刻地传递、储存和积累。数码化数据可以被高速处理,而且已经成为新型的、甚至是最有价值的生产资料。矿物可以冶炼成金属、原油可以提炼出汽油,如何将数据加工成信息、产生智能、解决过去无法解决的老问题和开创新的管理和商业模式以产生新价值是对我们的挑战。而迎接这一挑战的第一步就是要懂得和理解大数据思维。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22