京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 市场人员需要了解的五件事_数据分析师
大多数的市场人员正在认同这样一种观念,即:大数据不仅是一个技术上的挑战,而且对于更加有效地开展市场活动也有着极大的益处。
只要公司已经部署好了市场推广与宣传的战略,那么专业人员就意识到:通过更好地把握客户的信息与动机,并且对所付诸的努力加以评估的话,他们就更加有可能使市场推广活动取得良好的效果。
因此,作为一名市场人员,当你已经跨越过了如何去搜集大数据的初期阶段之后,你就要明白如何去管理和衡量好这些数据,以及它们对于业务发展的重要性。为了帮助这样一个新兴信息领域的拓展工作,我们在这里列出了市场人员在管理与使用大数据过程中需要了解的五项事情:
明确如何来存储数据。最为重要的是,在搜集到这些数据之前,你就要明确在哪里和如何来存储这些数据,这主要是指数据的格式与存储的物理场所。那么,这些数据能否利用云计算技术加以存储,并且可以从多个场所进行访问呢?如果不是的话,它能否在本地存储,并且如何加以备份呢?此外,这些数据能否加密呢?对于这些挑战来说,有许多种解决方案,因此必须要考虑到各种因素之后再做出最终的决定。
确定好应该衡量什么。在大多数时候,客户数据是我们主要要搜集与分析的,由于会存在客户子集上许多的数据集,因此我们就要确定好哪些数据集需要加以评估和交叉列表。在初期明确好这些事情,就会更加容易地将客户关系数据与预先确定好的数据进行匹配,从而获得有用的结果。
要确保你的数据是准确的。这看起来是不需要我们费心思的事情,但是许多时候我们对所获取到的数字给予了过高的信任。就像其他事情一样,我们需要对数据集中的某些内容进行认真的核实,以确保这些数据是完全准确的。通过这种核实工作,你就能够充满信心地认为:你所搜集到的信息正是你想要的信息,而且其计算是非常正确的。假如结果有些偏差的话,则可能是处理过程中出现的差错,这需要高度注意。同时,一定要保证在将信息传送给他人进行分析或思考之前就要做好审核工作。
了解应如何传播数据。作为一名市场人员,一旦你得到了数据和相关结果,你就必须要将其发送给更多的人员。但你必须要完整地理解该数据以及它所支持的含义,同时知道怎样才是呈现数据的最佳方式,以便达到彻底的消化。这就要求有一种以上的数据呈现方式,但不管怎样最终还是要回到所推荐采取的行动上。这是我们接下来要涉及的概念。
了解和实施行动方案。在分析了之后,就要完全了解所推荐行动背后的逻辑,争取到数据的支持(如果可能的话,从各种不同的角度)。之后,通过简明扼要的步骤制定出行动计划,并对结果做出预测。这就是大数据的应用方面,也是市场人员必须要做得最好的地方!(文章来源:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07