
从IT到DT,阿里巴巴大数据背后的商业秘密
空气污染究竟在多大程度上影响了人们的网购行为?有多少比重的线上消费属于新增消费?为什么中国的“电商百佳县”中浙江有41个而广东只有4个?
这些电商的秘密就隐藏在阿里巴巴商业生态的“大数据”中。
“未来制造业的最大能源不是石油,而是数据。”阿里巴巴董事局主席马云如此形容“数据”的重要意义。
在他看来,阿里巴巴本质上是一家数据公司,做淘宝的目的是为了获得零售的数据和制造业的数据;做蚂蚁金服的目的是建立信用体系;做物流不是为了送包裹,而是这些数据合在一起,“电脑会比你更了解你”。与此同时,产业的发展也正在从IT时代走向以大数据技术为代表的DT时代。
而在阿里巴巴内部,由电子商务、互联网金融、电商物流、云计算与大数据等构成的阿里巴巴互联网商业生态圈,也正是阿里研究院所扎根的“土壤”。
具体而言,阿里巴巴平台的所有海量数据来自于数百万充满活力的小微企业、个人创业者以及数亿消费者,阿里研究院通过对他们的商务活动和消费行为等进行研究分析,从某种程度上可以反映出一个地方乃至宏观经济的结构和发展趋势。
而随着阿里巴巴生态体系的不断拓展和延伸,阿里巴巴的数据资源一定程度上将能够有效补充传统经济指标在衡量经济冷暖方面存在的滞后性,帮助政府更全面、及时、准确地掌握微观经济的运行情况。
从IT到DT
不同于一些企业以技术研究为导向的研究院,阿里研究院副院长宋斐表示,阿里研究院定位于面向研究者和智库机构,主要的研究方向包括未来研究(如信息经济)、微观层面上的模式创新研究(如C2B模式、云端制组织模式)、中观层面上的产业互联网化研究(如电商物流、互联网金融、农村电商等)、宏观层面上新经济与传统经济的互动研究(如互联网与就业、消费、进出口等)、互联网治理研究(如网规、电商立法)等。
具体到数据领域,就是在阿里巴巴互联网商业生态基础上,从企业数据、就业数据、消费数据、商品数据和区域数据等入手,通过大数据挖掘和建模,开发若干数据产品与服务。
例如,将互联网数据与宏观经济统计标准对接的互联网经济数据统计标准,包括了中国城市分级标准;网络消费结构分类标准;网上商品与服务分类标准等。
而按经济主题划分的经济信息统计数据库则包括商品信息统计数据库;网购用户消费信息统计数据库;小企业与就业统计数据库;区域经济统计数据库。
还有反映电商经济发展的“晴雨表”——阿里巴巴互联网经济系列指数。其中包括反映网民消费意愿的阿里巴巴消费者信心指数aCCI、反映网购商品价格走势的阿里巴巴全网网购价格指数aSPI和固定篮子的网购核心价格指数aSPI-core、反映网店经营状态的阿里巴巴小企业活跃度指数aBAI、反映区域电子商务发展水平的阿里巴巴电子商务发展指数aEDI等等。其中,现有aSPI按月呈报给国家统计局。
而面向地方政府决策与分析部门的数据产品“阿里经济云图”,则将分阶段地推出地方经济总览、全景分析、监测预警以及知识服务等功能。宋斐介绍,其数据可覆盖全国各省、市、区县各级行政单位,地方政府用户经过授权后,可以通过阿里经济云图看到当地在阿里巴巴平台上产生的电子商务交易规模、结构特征及发展趋势。
“借助数据可视化和多维分析功能,用户可以对当地优势产业进行挖掘、对消费趋势与结构变动进行监测、与周边地区进行对比等等。”宋斐表示,该产品未来还可以提供API服务模式,以整合更多的宏观经济数据和社会公开数据,为当地经济全貌进行画像,给大数据时代的政府决策体系带来新的视角和工具。
数据会“说话”
对于如何利用“大数据”,马云在公司内部演讲中曾提到:“未来几年内,要把一切业务数据化,一切数据业务化。”
其中,后半句话可以理解为,让阿里巴巴各项业务所产生、积累的大数据来丰富阿里的生态,同时让生态蕴含的数据产生新的价值,再反哺生态,这是一个相辅相成的循环逻辑。
宋斐举例称,蚂蚁金服旗下的芝麻信用已获得人民银行个人征信牌照批准筹备,未来将通过分析大量的网络交易及行为数据,如用户信用历史、行为偏好、履约能力、身份特质、人脉等信息,对用户进行信用评估,这些信用评估可以帮助互联网金融企业对用户的还款意愿及还款能力做出结论,继而为用户提供快速授信及现金分期服务。本质上来说,“芝麻信用”是一套征信系统,该系统收集来自政府、金融系统的数据,还会充分分析用户在淘宝、支付宝等平台的行为记录。
再如,对于如火如荼的农村电商领域,阿里研究院从2010年就已开始对“沙集模式”个案进行研究,后续一系列基于数据和案例调研所驱动的农村电商研究成果,对于地方政府科学决策,推动当地农村电子商务发展、创造就业和发展地方经济起到了助力作用。到2014年底,全国已经涌现了212个淘宝村,而阿里巴巴也在这一年启动千县万村计划,将在三至五年内投资100亿元,在农村建立起电子商务服务体系。
除了通过数据分析去助力业务外,宋斐告诉笔者,有时候大数据报告可能会与传统的印象结论差异很大。
以区域电子商务为例,在阿里研究院发布的2014年中国电商百强县排行榜中,浙江有41个县入围,福建有16个,而广东只有4个,这个结果与传统的印象相差比较大。而事实上,这是因为浙江和广东两省电商发展在地理分布、产业结构等方面的明显不同而带来的。
再如,外界常常认为网络零售替代了线下零售,但事实上,麦肯锡《中国网络零售革命:线上购物助推经济增长》的研究报告,通过借鉴阿里研究中心(阿里研究院前身)和淘宝网UED用户研究团队的大量报告与数据,最后发现:“约60%的线上消费确实取代了线下零售;但剩余的40%则是如果没有网络零售就不会产生的新增消费。”
“这一研究成果,有助于社会各界准确认识网络零售与线下零售的关系,共同探索和建设良好的商业发展环境。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02