京公网安备 11010802034615号
经营许可证编号:京B2-20210330
第五,模式律(大卫律):数据中总含有模式。
这条规律最早由David Watkins提出。 我们可能预料到一些数据挖掘项目会失败,因为解决业务问题的模式并不存在于数据中,但是这与数据挖掘者的实践经验并不相关。
前文的阐述已经提到,这是因为:在一个与业务相关的数据集中总会发现一些有趣的东西,以至于即使一些期望的模式不能被发现,但其他的一些有用的东西可能会被 发现(这与数据挖掘者的实践经验是相关的);除非业务专家期望的模式存在,否则数据挖掘项目不会进行,这不应感到奇怪,因为业务专家通常是对的。
然而,Watkins提出一个更简单更直接的观点:“数据中总含有模式。”这与数据挖掘者的经验比前面的阐述更一致。这个观点后来经过Watkins修正,基于客户关系的数据挖掘项目,总是存在着这样的模式即客户未来的行为总是和先前的行为相关,显然这些模式是有利可图的(Watkins的客户关系管理定律)。但是,数据挖掘者的经验不仅仅局限于客户关系管理问题,任何数据挖掘问题都会存在模式(Watkins的通用律)。
Watkins的通用律解释如下:
总结这一观点:数据中总存在模式,因为在这过程中不可避免产生数据这样的副产品。为了发掘模式,过程从(你已经知道它)—–业务知识开始。
利用业务知识发现模式也是一个反复的过程;这些模式也对业务知识有贡献,同时业务知识是解释模式的主要因素。在这种反复的过程中,数据挖掘算法简单地连接了业务知识和隐藏的模式。
如果这个解释是正确的,那么大卫律是完全通用的。除非没有相关的数据的保证,否则在每个定义域的每一个数据挖掘问题总是存在模式的。
第六,洞察律:数据挖掘增大对业务的认知。
数 据挖掘是如何产生洞察力的?这个定律接近了数据挖掘的核心:为什么数据挖掘必须是一个业务过程而不是一个技术过程。业务问题是由人而非算法解决的。数据挖 掘者和业务专家从问题中找到解决方案,即从问题的定义域上达到业务目标需要的模式。数据挖掘完全或部分有助于这个认知过程。数据挖掘算法揭示的模式通常不 是人类以正常的方式所能认识到的。综合这些算法和人类正常的感知的数据挖掘过程在本质上是敏捷的。在数据挖掘过程中,问题解决者解释数据挖掘算法产生的结 果,并统一到业务理解上,因此这是一个业务过程。
这类似于“智能放大器”的概念,在早期的人工智能的领域,AI的第一个实际成果不是智能机器,而是被称为“智能放大器”的工具,它能够协助人类使用者提高获取有效信息的能力。数据挖掘提供一个类似的“智能放大器”,帮助业务专家解决他们不能单独完成的业务问题。
总之,数据挖掘算法提供一种超越人类以正常方式探索模式的能力,数据挖掘过程允许数据挖掘者和业务专家将这种能力融合在他们的各自的问题的中和业务过程中。
第七,预测律:预测提高了信息泛化能力。
“预测”已经成为数据挖掘模型可以做什么的可接受的描述,即我们常说的“预测模型”和“预测分析”。这是因为许多流行的数据挖掘模型经常使用“预测最可能的结果”(或者解释可能的结果如何有可能)。这种方法是分类和回归模型的典型应用。
但是,其他类型的数据挖掘模型,比如聚类和关联模型也有“预测”的特征。这是一个含义比较模糊的术语。一个聚类模型被描述为“预测”一个个体属于哪个群体,一个关联模型可能被描述为基于已知基本属性“预测”一个或更多属性。
同样我们也可以分析“预测”这个术语在不同的主题中的应用:一个分类模型可能被说成可以预测客户行为—-更加确切的说它可以预测以某种确定行为的目标客户,即使不是所有的目标个体的行为都符合“预测”的结果。一个诈骗检测模型可能被说成可以预测个别交易是否具有高风险性,即使不是所有的预测的交易都有欺诈行为。
“预测”这个术语广泛的使用导致了所谓的“预测分析”被作为数据挖掘的总称,并且在业务解决方案中得到了广泛的应用。但是我们应该意识到这不是日常所说的“预测”,我们不能期望预测一个特殊个体的行为或者一个特别的欺诈调查结果。
那么,在这个意义下的“预测”是什么?分类、回归、聚类和 关 联算法以及他们集成模型有什么共性呢?答案在于“评分”,这是预测模型应用到一个新样例的方式。模型产生一个预估值或评分,这是这个样例的新信息的一部 分;在概括和归纳的基础上,这个样例的可利用信息得到了提高,模式被算法发现和模型具体化。值得注意的是这个新信息不是在“给定”意义上的“数据”,它仅 有统计学意义。
第八,价值律:数据挖掘的结果的价值不取决于模型的稳定性或预测的准确性。
准确性和稳定性是预测模型常用的两个度量。准确性是指正确的预测结果所占的比例;稳定性是指当创建模型的数据改变时,用于同一口径的预测数据,其预测结果变 化有多大(或多小)。鉴于数据挖掘中预测概念的核心角色,一个预测模型的准确性和稳定性常被认为决定了其结果的价值的大小,实际上并非如此。
体现预测模型价值的有两种方式:一种是用模型的预测结果来改善或影响行为,另一种是模型能够传递导致改变策略的见解(或新知识)。
对于后者,传递出的任何新知识的价值和准确性的联系并不那么紧密;一些模型的预测能力可能有必要使我们相信发现的模式是真实的。然而,一个难以理解的复杂的 或者完全不透明的模型的预测结果具有高准确性,但传递的知识也不是那么有见地;然而,一个简单的低准确度的模型可能传递出更有用的见解。
准确性和价值之间的分离在改善行为的情况下并不明显,然而一个突出问题是“预测模型是为了正确的事,还是为了正确的原因?” 换句话说,一个模型的价值和它的预测准确度一样,都源自它的业务问题。例如,客户流失模型可能需要高的预测准确度,否则对于业务上的指导不会那么有效。相 反的是一个准确度高的客户流失模型可能提供有效的指导,保留住老客户,但也仅仅是最少利润客户群体的一部分。如果不适合业务问题,高准确度并不能提高模型 的价值。
模型稳定性同样如此,虽然稳定性是预测模型的有趣的度量,稳定性不能代替模型提供业务理解的能力或解决业务问题,其它技术手段也是如此。
总之,预测模型的价值不是由技术指标决定的。数据挖掘者应该在模型不损害业务理解和适应业务问题的情况下关注预测准确度、模型稳定性以及其它的技术度量。
第九,变化律:所有的模式因业务变化而变化。
数据挖掘发现的模式不是永远不变的。数据挖掘的许多应用是众所周知的,但是这个性质的普遍性没有得到广泛的重视。
数据挖掘在市场营销和CRM方面的应用很容易理解,客户行为模式随着时间的变化而变化。行为的变化、市场的变化、竞争的变化以及整个经济形势的变化,预测模型会因这些变化而过时,当他们不能准确预测时,应当定期更新。
数据挖掘在欺诈模型和风险模型的应用中同样如此,随着环境的变化欺诈行为也在变化,因为罪犯要改变行为以保持领先于反欺诈。欺诈检测的应用必须设计为就像处理旧的、熟悉的欺诈行为一样能够处理新的、未知类型的欺诈行为。
某些种类的数据挖掘可能被认为发现的模式不会随时间而变化,比如数据挖掘在科学上的应用,我们有没有发现不变的普遍的规律?也许令人惊奇的是,答案是即使是这些模式也期望得到改变。理由是这些模式并不是简单的存在于这个世界上的规则,而是数据的反应—-这些规则可能在某些领域确实是静态的。
然而,数据挖掘发现的模式是认知过程的一部分,是数据挖掘在数据描述的世界与观测者或业务专家的认知之间建立的一个动态过程。因为我们的认知在持续发展和增 长,所以我们也期望模式也会变化。明天的数据表面上看起来相似,但是它可能已经集合了不同的模式、(可能巧妙地)不同的目的、不同的语义;分析过程因受业 务知识驱动,所以会随着业务知识的变化而变化。基于这些原因,模式会有所不同。
总之,所有的模式都会变化,因为他们不仅反映了一个变化的世界,也反映了我们变化的认知。
后记:
这九条定律是关于数据挖掘的简单的真知。这九条定律的大部分已为数据挖掘者熟知,但仍有一些不熟悉(例如,第五、第六、第七)。大多数新观点的解释都和这九条定律有关,它试图解释众所周知的数据挖掘过程中的背后的原因。
我们为什么何必在意数据挖掘过程所采用的形式呢?除了知识和理解这些简单的诉求,有实实在在的理由去探讨这些问题。
数据挖掘过程以现在的形式存在是因为技术的发展—-机器学习算法的普及以及综合其它技术集成这些算法的平台的发展,使得商业用户易于接受。我们是否应该期望因技术的改变而改变数据挖掘过程?最终它会改变,但是如果我们理解数据挖掘过程形成的原因,然后我们可以辨别技术可以改变的和不能改变的。
一些技术的发展在预测分析领域具有革命性的作用,例如数据预处理的自动化、模型的重建以及在部署的框架里通过预测模型集成业务规则。数据挖掘的九条定律及其 解释说明:技术的发展不会改变数据挖掘过程的本质。这九条定律以及这些思想的进一步发展,除了有对数据挖掘者的教育价值之外,应该被用来判别未来任何数据 挖掘过程革命性变化的诉求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27