京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据对传统数据中心的影响
目前,多数企业已建成一体化企业级数据中心平台,能够满足日常业务的需求,但大数据时代对传统数据中心的数据存储能力、数据分析能力、数据交换能力、数据展现能力以及数据挖掘能力都提出了更高的要求,大数据对传统数据中心提出了新的挑战。
1、非结构化数据的重要性越来越大
传统数据中心的数据一般来源于用户通过个人电脑、移动终端、POS机等常规渠道生成的结构化数据。而大数据时代数据类型多样化,半结构化数据和非结构化数据呈现爆发式增长,且增长速度远远超过结构化数据。这些通过传感器、监测仪、机读仪器等机器设备产生的天气、位置、音频、文本等海量复杂数据越来越多,企业开始使用这些数据来改进产品、提高效率、寻找缺陷,其数据的重要性将会越来越大。
2、数据的时效性要求越来越高
传统数据中心的数据更新周期基本为日、周、月,辅以少量的实时数据更新,商务智能也基本以日、周、月、季度和年为时间维度的静态数据分析。大数据时代,对数据的处理速度和数据的时效性提出了更高要求,而当今社会日益加剧的商业竞争让每个企业都希望能通过实时分析报表和结果数据来随时掌握企业运营状况,并迅速作出决策和判断。以电力电量平衡测算为例,需要实时采集电网数据、实时分析、实时计算,快速测算结果,并反馈至电力调度部门进行有序用电执行预案的实时决策,如果相关数据获取不及时则会大大影响调度部门对有序用电的分析和决策。
3、大数据改变数据分析模式
传统数据分析以结构化数据分析为主,业务分析更是以被动式信息接受为主。大数据时代下,随着数据的累积和增加,可做的分析和对比也越来越多。通过对大量的数据进行分析,从而揭示数据之间隐藏的关系、模式和趋势;通过结构化数据、半结构化数据、非结构化数据的融合关联分析,实现文本分析、数据挖掘、图形分析、空间分析等数据分析模式,为决策者提供不同角度不同形式的分析判断依据。
4、大数据影响信息基础架构
目前电力企业数据中心主要以Unix为代表的操作系统服务器硬件平台、以Oracle关系型数据库为代表的企业级数据存储平台和以BW(数据仓库,Business Warehouse) ,BO(业务对象,Business Object)为代表的企业级商务智能分析平台组成。随着智能电网的发展,半结构化和非结构化数据呈现出快速增长的势头,大量部署的传感器、监视器、智能交互终端等设备都可以成为数据来源,并且其数据量大大超过了结构化数据。大数据时代下,分布式处理的软件框架使得XgG服务器开始大行其道,列存储、内存数据库、NOSQL存储、流计算等技术将成为数据存储和处理的主流技术。
传统数据中心商务智能专注单一数据集的分析处理,这造成了不同类型数据之间的割裂。而大数据分析聚合多个数据集,注重不同类型数据的融合集成与关联分析,是一种综合关联性分析。因此,传统数据中心分析处理架构已无法适应大数据时代的分析要求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17