
大数据产业链之路还有多远
随着大数据炒作期的结束,国内外大量企业开始投入大数据实战,大数据生态产业链逐渐形成。整体而言,全球的大数据应用处于发展初期,中国大数据应用才刚刚起步。目前,大数据应用在各行各业的发展呈现“阶梯式”格局:互联网行业是大数据应用的领跑者,金融、零售、电信、公共管理、医疗卫生等领域积极尝试大数据。现阶段制约大数据发展的因素有三方面,分别是数据、技术和应用。
大数据产业链的参与者主要包括:
数据提供商、分析技术提供商、基础设施提供商、业务应用提供商。
基础设施提供商在基础设施方面,非关系型数据库和高扩展性、高性能数据库发展迅猛,竞争十分激烈,例如Redis、SkySql、Cassandra、 CouchDB、MongoDB等,Hadoop平台部署市场由于门槛较高,除了Cloudera、Hortonworks等少数几家由大型互联网公司高管创建的新兴公司外,其他市场均被微软、IBM、Amazon等传统巨头所占据。
Cloudera 是一家Hadoop数据管理软件与服务的提供商,为企业搭建和使用分布式平台提供服务,是大数据领域最强的解决方案服务商之一。公司目前的业务主要分为三大部分:Hadoop发行版(软件、一体机、云服务),Hadoop专业服务和Hadoop技术培训。让Hadoop变得更简单,Cloudera一直走在最前面,包括提供了第一个基于开源Hadoop的商业发行版,第一个添加NoSQL(HBase)到Hadoop平台,第一个在HDFS上提供SQL查询能力的平台(Impala),第一个将流数据处理能力(Spark)添加到Hadoop发行版的厂商。
Amazon 是一家通过云基础构架服务支撑其零售业务的大数据公司,其网络服务为客户提供基础设施产品。提供服务包括:亚马逊弹性计算网云(Amazon EC2)、亚马逊简单储存服务(Amazon S3)、亚马逊简单队列服务(Amazon Simple QueueService)以及Amazon CloudFront等。其优势是:1)用低廉的月成本替代前期基础设施投资;2)持续成本低:缩减您的 IT 总成本;3)灵活性:消除您对基础设施容量需求的猜想;4)速度和灵敏性更快地开发和部署应用程序;5)应用而非运营;6)全球性覆盖。
数据和数据能力提供商阿里巴巴则是手握海量数据的大数据参与者,拥有淘宝、天猫海量的在线交易数据,并融合微博、高德、友盟、UC浏览器、快的等各种应用数据,涉及金融、旅游、健康、物流等方方面面数据。旗下的淘宝网提供的淘宝卖家服务通过出售这些数据帮助淘宝店铺进行基础经营分析、商品优化分析、订单分析以及营销效果分析。产品包括数据魔方、淘宝指数、阿里经济云图、蚂蚁金融、淘数据等。
分析技术提供商在分析工具领域,Splunk 是最成功的新兴企业之一。该公司机器数据的搜索引擎,可收集所有应用程序、服务器和移动设备设备(包括物理、虚拟和云端),生成索引,从一个位置快速搜索并分析所有实时和历史数据。该公司已经取得巨大成功,是全球十家最有竞争力的大数据公司之一。
拓尔思(TRS)是中国最大的搜索技术和内容管理技术供应商,非结构化信息处理技术领域的领导企业。其数据中心具有强大的数据采集能力和强大的运算能力,以“平台+行业解决方案+服务综合”的产品线,为广大政府和企业用户提供产品和服务。
统计分析领域的Matlab、SAS,数据可视化领域的Visual.ly、Zoomdata、Chart.io分别提供可视化设计平台、分布式数据展示工具和数据库分析工具。
业务应用提供商在行业应用方面,广告优化、市场营销和金融等行业应用最为活跃。DOUBLECLICK是美国网络广告服务商,其核心技术是其专有的动态广告报告与目标定位(DART)技术,企业可以通过中央服务器管理各自的广告服务及统计报告。
互联网广告领域的最新模式——实时竞价(RTB)与大数据关系密切,Google等公司的广告平台已经充分利用其自身数据来优化广告效果,提升广告收入。 Lattice Engines聚焦于B2B销售行业的大数据应用,该公司的SalesPrism数据分析平台能够通过分析消费者消费倾向,向销售人员提供营销建议。金融领域大数据信用评估也开始流行,这让Lenddo等非传统金融企业也可以大规模开展贷款业务,该公司基于人们在社交媒体上的表现,将贷款服务拓展到了新兴市场上。
国内大数据市场与国外还存在一定差距,从市场规模来看,国内的大数据产业链还只是初具雏形。目前全球最具影响力的前15家大数据企业中还没有出现中国企业的身影,这也从宏观上表明当前国内大数据市场仍处在发展初期。
从发展特点来看,国内大数据企业更依赖于数据资源,而新技术、新商业模式的突破则相对缓慢。例如在基础设施领域,无论是百度、腾讯,还是淘宝、中国移动都推出了各自数据中心项目,通常以容量来衡量成就,而国外企业则已经把主要目光投向整体解决方案的设计,已经具备了较为清晰的、取得市场认可的大数据盈利模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18