京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业链之路还有多远
随着大数据炒作期的结束,国内外大量企业开始投入大数据实战,大数据生态产业链逐渐形成。整体而言,全球的大数据应用处于发展初期,中国大数据应用才刚刚起步。目前,大数据应用在各行各业的发展呈现“阶梯式”格局:互联网行业是大数据应用的领跑者,金融、零售、电信、公共管理、医疗卫生等领域积极尝试大数据。现阶段制约大数据发展的因素有三方面,分别是数据、技术和应用。
大数据产业链的参与者主要包括:
数据提供商、分析技术提供商、基础设施提供商、业务应用提供商。
基础设施提供商在基础设施方面,非关系型数据库和高扩展性、高性能数据库发展迅猛,竞争十分激烈,例如Redis、SkySql、Cassandra、 CouchDB、MongoDB等,Hadoop平台部署市场由于门槛较高,除了Cloudera、Hortonworks等少数几家由大型互联网公司高管创建的新兴公司外,其他市场均被微软、IBM、Amazon等传统巨头所占据。
Cloudera 是一家Hadoop数据管理软件与服务的提供商,为企业搭建和使用分布式平台提供服务,是大数据领域最强的解决方案服务商之一。公司目前的业务主要分为三大部分:Hadoop发行版(软件、一体机、云服务),Hadoop专业服务和Hadoop技术培训。让Hadoop变得更简单,Cloudera一直走在最前面,包括提供了第一个基于开源Hadoop的商业发行版,第一个添加NoSQL(HBase)到Hadoop平台,第一个在HDFS上提供SQL查询能力的平台(Impala),第一个将流数据处理能力(Spark)添加到Hadoop发行版的厂商。
Amazon 是一家通过云基础构架服务支撑其零售业务的大数据公司,其网络服务为客户提供基础设施产品。提供服务包括:亚马逊弹性计算网云(Amazon EC2)、亚马逊简单储存服务(Amazon S3)、亚马逊简单队列服务(Amazon Simple QueueService)以及Amazon CloudFront等。其优势是:1)用低廉的月成本替代前期基础设施投资;2)持续成本低:缩减您的 IT 总成本;3)灵活性:消除您对基础设施容量需求的猜想;4)速度和灵敏性更快地开发和部署应用程序;5)应用而非运营;6)全球性覆盖。
数据和数据能力提供商阿里巴巴则是手握海量数据的大数据参与者,拥有淘宝、天猫海量的在线交易数据,并融合微博、高德、友盟、UC浏览器、快的等各种应用数据,涉及金融、旅游、健康、物流等方方面面数据。旗下的淘宝网提供的淘宝卖家服务通过出售这些数据帮助淘宝店铺进行基础经营分析、商品优化分析、订单分析以及营销效果分析。产品包括数据魔方、淘宝指数、阿里经济云图、蚂蚁金融、淘数据等。
分析技术提供商在分析工具领域,Splunk 是最成功的新兴企业之一。该公司机器数据的搜索引擎,可收集所有应用程序、服务器和移动设备设备(包括物理、虚拟和云端),生成索引,从一个位置快速搜索并分析所有实时和历史数据。该公司已经取得巨大成功,是全球十家最有竞争力的大数据公司之一。
拓尔思(TRS)是中国最大的搜索技术和内容管理技术供应商,非结构化信息处理技术领域的领导企业。其数据中心具有强大的数据采集能力和强大的运算能力,以“平台+行业解决方案+服务综合”的产品线,为广大政府和企业用户提供产品和服务。
统计分析领域的Matlab、SAS,数据可视化领域的Visual.ly、Zoomdata、Chart.io分别提供可视化设计平台、分布式数据展示工具和数据库分析工具。
业务应用提供商在行业应用方面,广告优化、市场营销和金融等行业应用最为活跃。DOUBLECLICK是美国网络广告服务商,其核心技术是其专有的动态广告报告与目标定位(DART)技术,企业可以通过中央服务器管理各自的广告服务及统计报告。
互联网广告领域的最新模式——实时竞价(RTB)与大数据关系密切,Google等公司的广告平台已经充分利用其自身数据来优化广告效果,提升广告收入。 Lattice Engines聚焦于B2B销售行业的大数据应用,该公司的SalesPrism数据分析平台能够通过分析消费者消费倾向,向销售人员提供营销建议。金融领域大数据信用评估也开始流行,这让Lenddo等非传统金融企业也可以大规模开展贷款业务,该公司基于人们在社交媒体上的表现,将贷款服务拓展到了新兴市场上。
国内大数据市场与国外还存在一定差距,从市场规模来看,国内的大数据产业链还只是初具雏形。目前全球最具影响力的前15家大数据企业中还没有出现中国企业的身影,这也从宏观上表明当前国内大数据市场仍处在发展初期。
从发展特点来看,国内大数据企业更依赖于数据资源,而新技术、新商业模式的突破则相对缓慢。例如在基础设施领域,无论是百度、腾讯,还是淘宝、中国移动都推出了各自数据中心项目,通常以容量来衡量成就,而国外企业则已经把主要目光投向整体解决方案的设计,已经具备了较为清晰的、取得市场认可的大数据盈利模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20