京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS:质量信息管理的助手
目前,企业的各种质量数据量越来越大,对质量数据的处理工作量就异常巨大,软件研究人员把它们称作海量数据。海量数据有以下两个特点:首先,数据量庞大,由于企业规模扩张、产品品种急剧增加、产品产量的增大,其质量特征信息量也必然十分庞大。其次,海量数据集的隐性特征和特征数据的获得十分困难,数据的隐性特征是指数据的相关特性,特征数据包括样本的对称性、中心位置、分布特征等。
然而,企业间竞争的日益激烈,不仅使得企业对这些信息处理结果的精确度要求越来越高,而且对信息处理的时间也越来越短。由于处理海量数据的工作量太大,企业要进行科学的质量管理,客观上需要专业性的统计分析软件作为工具。
SPSS统计软件介绍
SPSS是现代统计软件的典型代表,其全称是:Statistical Pro?鄄gram for Social Sciences,即社会科学统计程序,该软件是公认的最优秀的统计分析软件包之一。如今SPSS已经由DOS版本发展为Windows版本,我国用户目前大多使用9.0~12.0版本。
作为统计分析工具,SPSS的功能包括数据统计管理、统计分析、趋势研究、制表绘图、文字处理等。SPSS对质量信息的管理,是指在生产、管理的所有阶段借助SPSS统计软件、运用统计方法对产品质量信息、数据所进行的处理和分析过程。其具体操作主要包括:数据的收集和简单处理、编制统计质量控制图、线外质量控制(又称试验设计)、抽样验收等。
本文主要介绍SPSS对质量信息的一般性管理,包括质量数据集的建立和简单处理、质量数据的统计描述等。
SPSS质量数据集
的建立与简单管理
数据集是统计数据的简单集合,一般具有大量性、差异性和同质性三个特征。数据集是统计软件研究的基本单元,是统计分析的起点。创建一个稳健、有效率的数据集对于正确的统计分析十分重要。质量信息数据集就是SPSS针对各类质量信息、数据所建立的数据集合,SPSS利用质量信息数据集对其进行统计分析。质量信息数据在这里是指生产、检验等过程中所得到的质量信息、数据,对于获得的不是数据性的信息,要进行数据化处理,转化为可以统计分析的数据,进而建立数据集。
1. 建立SPSS质量数据集
下面,以2004年山东省质量技术监督局名牌万里行活动所调查的关于山东各名牌产品知名度的部分数据、信息为例,建立SPSS质量数据集:
⑴信息数据化,确定变量值。
问卷对知名度调查的问题是:您听说过下列哪些名牌产品?所涉及的可供选择答案共有13种产品,将产品和被调查者的年龄、文化程度及从业岗位作为变量,各取变量名。针对每一产品有“听说过”和“没有听说过”两种回答,则分别用变量值“1”和“0”来表示;对于被调查者的各变量,用“1”、“2”分别表示“男”、“女”;用“1”、“2”、“3”、“4”、“5”分别表示“高中以下”、“高中或中专”、“大专”、“大学”、“大学以上”;用“1”、“2”、“3”、“4”、“5”分别表示“机关或事业单位”、“企业”、“军人”、“农民”、“其他”。
⑵变量、变量值的录入
启动SPSS后,将自动打开SPSS的数据编辑器,在其左下端有两个页标签,其中,“Data View”是数据窗口,“Variable View”是变量属性窗口,前者录入变量值,后者输入变量名并定义其各个属性。最后,SPSS用 “sav”类型保存其数据集。
值得一提的是,在确定变量属性时,单击“Values”列格中的阴影方框,可以定义该变量的标签。
2. SPSS数据集的简单管理
SPSS数据集内数据的简单管理包括数据、单元格的查找,观测量的分类排序,数据文件的分类汇总和数据的选择等。这些功能主要由“Data”下拉菜单中的各个命令来完成,这与excel并没有很大的区别,并且这些功能excel也能够较好地完成。
质量数据的统计描述
要对质量数据做好统计分析,首先要对这些数据进行描述性统计分析。SPSS统计软件对质量信息的描述统计分析功能主要集中在Descriptive Statistics菜单中,主要包括建立质量数据频率表,质量数据的一般性统计描述、探索性分析和交叉统计等。
1. 建立质量数据频率表
SPSS统计软件建立数据频率表由“Analyze”菜单中“Descriptive Statistics”的“Frequencies…”项来完成。具体操作如下:
打开“Analyze”菜单,选择“Descriptive Statistics”中的“Fre?鄄quencies…”项,弹出“Frequencies”对话框,将两个变量选入“Variable(s)”框内。单击“Statis?鄄tics”按钮。可以弹出“Frequencies:Statistics”对话框,其中,“Per?鄄centile Values”复选框组定义了需要输出的百分位数;“Central ten?鄄dency”复选框组主要用来定义描述集中趋势的一组指标:均值(Mean)、中位数(Median)、众数(Mode)、总合(Sum);“Disper?鄄sion”复选框组用于定义标准差(Std.deviation)、方差(Variance)、全距(Range)等描述离散趋势的一组指标;“Distribution”复选框组用于定义描述分布特征的两个指标:偏度系数(Skewness)和峰度系数(Kurtosis)。点击“Statistics”对话框中的“Charts”按钮可以选择是否在输出结果中输出所要求的辅助图形,例如条形图、直方图等,本例选择饼图(Pie chart)。点击“Statis?鄄tics”对话框中的“Format”按钮可以定义输出频数表的格式。最后,点击“OK”,可以得到频率表和频率饼图,如文中图一、表一所示。
2. 质量数据的一般性统计描述
质量数据的一般性统计描述主要是指对连续性随机变量进行的一般描述统计。这个过程既可以对变量进行描述性统计分析,列出一系列相应的统计指标,还可以将原始数据转换成标准正态评分值并以变量的形式存入数据库以供分析。这一功能是由SPSS的“Analyze”菜单中“Descriptive Statistics”的“Descriptive…”项来完成。
例如,某一企业要统计每个车间(共两个)在一个月内所付出的质量成本,并统计预防成本、鉴定成本、内部损失成本和外部损失成本的差异,由所统计的数据建立SPSS数据文件。要求对这些数据进行一般性统计描述,得到各项所需指标,操作如下:
打开“Analyze”菜单选中“Descriptive Statistics”中的“Descriptions…”项,则会弹出“Descrip?鄄tives”对话框。将变量均选入“Variable(s):”框内,如果选中“Save standardized values as variables”复选框,则将变量的原始数据的标准正态评分存为新变量,列在后面(此例不选)。如果,点击“Descrip?鄄tives”对话框中的“Options…”按钮,则会弹出“Descriptions Op?鄄tions”对话框,在其中可以设置各项所需的统计指标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22